作者单位
摘要
山东大学,新一代半导体材料研究院,晶体材料国家重点实验室,济南 250100
氮化铝(AlN)是直接带隙半导体,具有超宽禁带宽度(6.2 eV)、高热导率[3.2 W/(cm·K)]、高表面声波速率(VL= 10.13×105 cm/s,VT=6.3×105 cm/s)、高击穿场强和稳定的物理化学性能,是紫外/深紫外发光材料的理想衬底,由此制作的AlxGa1-xN材料,还可以实现200~365 nm波段内的连续发光;可以制作耐高压、耐高温、抗辐射和高频的电子器件,是具有巨大潜力的新一代半导体材料。本文介绍了物理气相传输法异质外延生长AlN单晶的原理,并从碳化硅(SiC)衬底上AlN单晶生长研究历程、AlN/SiC衬底生长AlN晶体以及偏晶向SiC衬底生长AlN晶体3个方面综述了SiC衬底上异质外延生长AlN晶体的研究进展。最后简述了SiC衬底上生长AlN单晶面临的挑战和机遇,展望了AlN材料的未来发展前景。
氮化铝单晶 碳化硅衬底 物理气相传输法 异质外延 aluminum nitride single crystal silicon carbide substrate physical phase transport heteroepitaxy 
硅酸盐学报
2023, 51(6): 1439
陈根强 1,2,*赵浠翔 1,2于众成 1,2李政 1,2[ ... ]王宏兴 1,2
作者单位
摘要
1 西安交通大学, 电子物理于器件教育部重点实验室, 西安 710049
2 西安交通大学电子与信息学部, 宽禁带半导体与量子器件研究所, 西安 710049
相较于传统的硅材料, 宽禁带半导体材料更适合制作高压、高频、高功率的半导体器件, 被认为是后摩尔时代材料创新的关键角色。单晶金刚石拥有大禁带宽度、高热导率、高迁移率等优异特性, 更是下一代大功率、高频电子器件的理想半导体材料。然而由于可获得单晶金刚石的尺寸较小, 且价格昂贵, 极大地阻碍了金刚石的发展。历经长时间的探索, 异质外延生长技术成为了获得高质量、大面积单晶金刚石的有效手段。本综述从金刚石异质外延的衬底选择、生长机理以及质量改善等方面对近些年来异质外延单晶金刚石的发展进行详细介绍。进一步地, 对基于异质外延单晶金刚石的场效应晶体管和二极管的研究进行了总结, 说明了异质外延单晶金刚石在电子器件领域的巨大潜力。最后总结了异质外延单晶金刚石仍需面对的挑战, 展望了其在未来的应用与发展前景。
单晶金刚石 异质外延生长 宽禁带半导体 半导体器件 场效应晶体管 二极管 single-crystal diamond heteroepitaxial growth wide-band gap semiconductor semiconductor device field-effect transistor diode 
人工晶体学报
2023, 52(6): 931
屈鹏霏 1,2,*金鹏 1,2周广迪 1,2王镇 1,2[ ... ]王占国 1,2
作者单位
摘要
1 中国科学院半导体研究所, 北京 100083
2 中国科学院大学材料与光电研究中心, 北京 100049
金刚石优异的物理性质使其成为下一代最有发展潜力的半导体材料之一。目前来看, 基于微波等离子体化学气相沉积的异质外延可能是未来制备大尺寸单晶金刚石的最佳方法。在过去的三十年间, 铱复合衬底上异质外延生长单晶金刚石取得了一定进展, 特别是近几年实现了2英寸(1英寸=2.54 cm)以上的大尺寸自支撑单晶金刚石的生长。本文总结了金刚石异质外延用的衬底, 简要介绍了异质衬底上的偏压增强成核, 详细介绍了目前最成功的铱/氧化物、铱/氧化物层/硅复合衬底, 最后对金刚石异质衬底和异质外延进行了总结, 指出目前存在的问题并给出了一些可能的解决思路。
金刚石 铱复合衬底 半导体 异质外延 偏压增强成核 微波等离子体化学气相沉积 diamond iridium-based composite substrate semiconductor heteroepitaxy bias-enhanced nucleation microwave plasma chemical vapor deposition 
人工晶体学报
2023, 52(5): 857
作者单位
摘要
中国电子科技南湖研究院, 嘉兴 314000
与传统硅基电子相比, 柔性电子因其独特的便携性、折叠卷曲性和生物相容性被广泛研究。柔性存储器作为柔性电子重要分支, 在可穿戴设备、智慧医疗、电子皮肤等领域展现出良好的应用前景。同时随着5G、人工智能、物联网等新一代信息技术深入应用, 市场对高密度、非易失、超低功耗柔性存储器的需求持续释放, 催生了柔性铁电存储器件的研究热潮。本文综述了近年来柔性无机铁电薄膜的制备及其在存储器领域应用进展。首先介绍了柔性铁电薄膜制造技术的发展情况, 包括柔性基板上的范德瓦耳斯异质外延、刚性基板上的化学蚀刻分层、新型二维(2D)铁电材料生长等, 然后介绍了基于无机铁电薄膜的柔性存储器的研究进展, 最后对柔性铁电存储器的未来发展进行了展望。
柔性 无机材料 铁电薄膜 范德瓦耳斯异质外延 化学蚀刻 二维铁电材料 存储器 flexible inorganic material ferroelectric thin film van der Waals heteroepitaxy chemical etching 2D ferroelectric material memory 
人工晶体学报
2023, 52(3): 380
常梦琳 1,2,*樊星 1,2张微微 1,2姚金山 1,2[ ... ]芦红 1,2,3
作者单位
摘要
1 南京大学固体微结构物理国家重点实验室, 南京 210093
2 南京大学现代工程与应用科学学院, 南京 210023
3 江苏省功能材料设计原理与应用技术重点实验室, 南京 210023
为了实现Ⅲ-V器件在硅基平台上单片集成, 近年来Ⅲ-V半导体在硅衬底上的异质外延得到了广泛研究。由于Ⅲ-V半导体与Si之间大的晶格失配以及晶格结构不同, 在Si上生长的Ⅲ-V半导体中存在较多的失配位错及反相畴, 对器件性能造成严重影响。而Si(111)表面的双原子台阶可以避免Ⅲ-V异质外延过程中形成反相畴。本文利用分子束外延技术通过Al/AlAs作为中间层首次在Si(111)衬底上外延生长了GaAs(111)薄膜。通过一系列对比实验验证了Al/AlAs中间层的插入对GaAs薄膜质量的调控作用, 并在此基础上通过低温-高温两步法优化了GaAs的生长条件。结果表明Al/AlAs插层可以为GaAs外延生长提供模板, 并在一定程度上释放GaAs与Si之间的失配应力, 从而使GaAs薄膜的晶体质量得到提高。以上工作为Ⅲ-V半导体在硅上的生长提供了新思路。
分子束外延 Ⅲ-V族半导体 硅基砷化镓 异质外延 硅基集成 molecular beam epitaxy Ⅲ-V semiconductor GaAs on Si hetero-epitaxy Si based integration 
人工晶体学报
2022, 51(11): 1815
薛国栋 1,2,*郭泉林 1,2刘灿 1,2刘开辉 1,2
作者单位
摘要
1 北京大学物理学院,北京 100871
2 北京大学人工微结构和介观物理国家重点实验室,北京 100871
二维过渡金属硫族化合物具备丰富的材料种类与物理特性,通过平面/垂直异质结构设计为拓展其电学及光电功能器件应用提供了更多自由度。异质界面控制,包括界面结构、耦合强度及外延尺寸设计,是实现异质结构性能调控的关键手段。通过设计一种精准控制平面异质外延界面结构的新方法,实现了具备宏观反平行嵌套的MoS2-WS2平面异质结构制备。研究表明,该宏观反平行异质结在微观尺度具备平行晶格排布特征,即,MoS2与WS2晶畴界面仍为原子无缝拼接结构。该研究结果进一步实现了丰富界面结构的MoS2-WS2平面异质结制备,为二维材料异质外延的精准控制提供了一条新思路。
二维材料 异质外延 界面调控 限域空间 two-dimensional materials heteroepitaxy interface control confined space 
硅酸盐学报
2022, 50(7): 1783
李路 1,2徐俞 3曹冰 1,2徐科 3
作者单位
摘要
1 苏州大学光电科学与工程学院,苏州 215006
2 江苏省先进光学制造技术重点实验室和教育部现代光学技术重点实验室,苏州 215006
3 中国科学院苏州纳米技术与纳米仿生研究所,苏州 215123
AlGaN基材料作为带隙可调的直接带隙宽禁带半导体材料,是制备紫外光电子器件的理想材料。在无法获得大尺寸、低成本的同质衬底的情况下,高质量AlN薄膜的异质外延是促进紫外光电子器件发展的关键。本文中,通过调节蓝宝石衬底上AlN的金属有机物化学气相沉积(MOCVD)生长模式产生高密度纳米级孔洞,利用纳米级孔洞降低AlN的位错,并在此基础上外延了AlGaN量子阱结构,得到了275 nm波段的深紫外LED薄膜,并制备了开启电压约为4.8 V,反向漏电电流仅为2.23 μA(-3.0 V电压时)的深紫外LED器件。
AlN薄膜 AlGaN材料 紫外LED 异质外延 纳米级孔洞 AlN thin film AlGaN material ultraviolet LED heterogeneous epitaxy nanoscale hole 
人工晶体学报
2022, 51(7): 1158
王嘉宾 1,2,*王海珠 1,2刘伟超 1,2王曲惠 1,2[ ... ]马晓辉 1,2
作者单位
摘要
1 长春理工大学 重庆研究院, 重庆 401135
2 长春理工大学 高功率半导体国家重点实验室, 吉林 长春 130022
在硅(Si)上外延生长高质量的砷化镓(GaAs)薄膜是实现硅基光源单片集成的关键因素。但是, Si材料与GaAs材料之间较大的晶格失配、热失配等问题对获得高质量的GaAs薄膜造成了严重影响。本文利用金属有机化学气相沉积(MOCVD)技术开展Si基GaAs生长研究。通过采用三步生长法, 运用低温成核层、高温GaAs层与循环热退火等结合的方式, 进一步降低Si基GaAs材料的表面粗糙度和穿透位错密度。并利用X射线衍射(XRD)ω-2θ扫描追踪采用不同方法生长的样品中残余应力的变化。最终, 在GaAs低温成核层生长时间62 min(生长厚度约25 nm)时, 采用三步生长、循环热退火等结合的方式获得GaAs(004) XRD摇摆曲线峰值半高宽(FWHM)为401″、缺陷密度为6.8×107 cm-2、5 μm×5 μm区域表面粗糙度为6.71 nm的GaAs外延材料, 在材料中表现出张应力。
金属有机化学气相沉积 砷化镓  异质外延 metal-organic chemical vapor deposition GaAs Si heteroepitaxy 
发光学报
2022, 43(2): 153
作者单位
摘要
1 浙江大学材料科学与工程学院,硅材料国家重点实验室, 杭州 310027
2 浙江大学杭州国际科创中心, 杭州 311200
宽禁带半导体具备禁带宽度大、电子饱和飘移速度高、击穿场强大等优势,是制备高功率密度、高频率、低损耗电子器件的理想材料。碳化硅(SiC)材料具有热导率高、化学稳定性好、耐高温等优点,在SiC衬底上外延宽禁带半导体材料,对充分发挥宽禁带半导体材料的优势,并提升宽禁带半导体电子器件的性能具有重要意义。得益于SiC衬底质量持续提升及成本不断降低,基于SiC衬底的宽禁带半导体电子市场占比呈现逐年增加的态势。在SiC衬底上外延生长高质量的宽禁带半导体材料是提高宽禁带半导体电子器件性能及可靠性的关键瓶颈。本文综述了近年来国内外研究者们在SiC衬底上外延SiC、氮化镓(GaN)、氧化镓(Ga2O3)所取得的研究进展,并展望了SiC衬底上宽禁带半导体外延的发展及应用前景。
SiC衬底 宽禁带半导体 异质外延 同质外延 晶格失配 缺陷调控 SiC substrate wide bandgap semiconductor heteroepitaxy homoepitaxy lattice mismatch GaN GaN Ga2O3 Ga2O3 defect control 
人工晶体学报
2021, 50(9): 1780
袁紫媛 1,*潘睿 1夏顺吉 1魏炼 1[ ... ]芦红 1,2
作者单位
摘要
1 南京大学,固体微结构物理国家重点实验室&现代工程与应用科学学院,南京 210093
2 江苏省功能材料设计原理与应用技术重点实验室,南京 210023
硅基上高质量的异质外延生长是实现高性能微电子器件的基础,本文通过低温分子束外延技术在Si衬底上实现了全组分的Si1-xGex(0分子束外延 Si1-xGex合金 硅基锗 Ge量子点 异质外延 界面调控 molecular beam epitaxy Si1-xGex alloy Ge on Si Ge quantum dot heteroepitaxy interfacial modulation 
人工晶体学报
2020, 49(11): 2178

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!