王承琨 1,*赵鹏 1,2
作者单位
摘要
1 东北林业大学信息与计算机工程学院, 黑龙江 哈尔滨 150040
2 广西科技大学计算机科学与通信工程学院, 广西 柳州 545006
木材是人们生活中必不可少的可再生资源, 同时在建筑、 工艺、 家具、 结构材料等方面有着举足轻重的地位。 市场中常见的木材品种繁多, 其品质和价格千差万别, 使用智能化技术对木材进行正确的分类不仅可以防止不法商贩“以次充好”, 也可以大幅度降低木材分类人员的工作难度。 通过木材的遗传信息和解剖学信息可以得到较为准确的木材分类结果, 这类方法识别工艺相对复杂, 对非专业人员并不友好。 借助木材切面的图像信息或光谱信息可以简单方便地对木材进行分类, 然而由于不同种木材之间存在的近似性, 这类方法往往分类精度不高或只适用于某些阔叶木材。 提出了一种基于木材横切面图像信息和光谱信息的多特征木材分类算法, 首先分别采集木材横切面的光谱信息以及图像信息; 再使用Segnet图像分割方法将待分类样本分成含管孔木材和不含管孔木材两组, 并对含管孔样本组中的木材进行管孔分割; 然后对含管孔样本组中的木材提取管孔特征、 光谱特征以及纹理特征, 对无管孔样本组木材提取光谱特征和纹理特征; 最后根据这些特征使用支持向量机分别对木材进行分类并记录其木材的分类结果, 对分类结果不一致的样本使用相似性判据判断最佳分类结果。 为了验证该方法的有效性, 以20种常见的阔叶木材和针叶木材的混合样本集为研究对象, 对其进行了分类。 实验结果显示三种特征均可以对木材进行分类, 单独使用光谱特征、 纹理特征以及管孔特征对木材进行分类的最高正确率分别为93.00%, 89.33% 和69.23%, 通过相似测度的判断后三个特征可以相互补充从而进一步提高木材的分类正确率, 最高正确率可达98.00%。 综上所述, 该方法可以对包含阔叶木材和针叶木材的混合样本集中的木材进行分类, 木材横切面的光谱特征、 纹理特征以及管孔特征可以相互补充, 从而使分类正确率进一步的提高。 与目前的主流木材分类方法进行对比, 发现该算法的分类正确率高于其他算法。
木材树种识别 纹理特征 管孔特征 光谱特征 特征融合 Wood species classification Textural feature Pore feature Spectral feature Feature-level fusion 
光谱学与光谱分析
2021, 41(6): 1713
作者单位
摘要
College of Information and Computer Engineering, Northeast Forestry University, Harbin50040,China
木材往往堆积在室外,在对木材样本采集高光谱图像时往往会受到外界因素(光照、温度、湿度)的影响,从而造成木材树种的误判。为了解决这一问题,本文利用PLS(Pattern Lacunarity Spectrum)和LBP(Local Binary Pattern)对木材横截面的高光谱图像的纹理信息进行了特征提取,而后将高光谱图像的近红外光谱与纹理特征相融合,并以融合后的新特征作为识别的依据,最后使用SVM(Support Vector Machine)和BP(Back Propagation)神经网络两种分类器对木材树种进行了识别,实验表明该算法在无干扰情况下可拥有最高100%的识别正确率效果。为了验证该算法可以在高光谱图像失真的情况下依然可以对木材进行正确的识别,本文仿真了光照变化对高光谱图像的影响,并对比了影响前后的识别正确率,结果显示该算法可以在高光谱图像失真的情况下对木材的树种进行正确的识别,优于传统的和近期主流的木材树种分类算法。
高光谱图像 木材树种识别 光照变化 特征融合 hyper-spectral image wood species recognition illumination variation feature fusion 
红外与毫米波学报
2020, 39(1): 72
作者单位
摘要
东北林业大学 信息与计算机工程学院, 黑龙江 哈尔滨 150040
为了过滤木材高光谱图像中大量的冗余信息, 提升应用图像纹理进行分类的准确率, 本文采用基于多重分形理论的木材高光谱图像分类算法。首先利用不同的特征选择算法选取最具代表性的10个波段; 随后根据不同的函数密度图像对所选取波段的图像求解其多重分形曲线, 将选择出的多个波段所对应的多重分形曲线取平均, 得到表示样本纹理特征的多重分形曲线; 最后使用支持向量机和BP神经网络分类器对多重分形曲线进行分类。实验表明, 相对熵(K-L散度)要好于自适应波段选择(ABS)提取的波段, 多重分形算法提取的高光谱图像纹理特征要好于灰度共生矩阵, 支持向量机算法的分类准确率和速度要优于BP神经网络, 融合K-L散度、多重分形和支持向量机算法能够有效地提高木材高光谱图像的识别准确率, 最高识别准确率达到了97.91%。
木材树种识别 高光谱图像纹理 多重分形 wood species recognition hyper-spectral image multi fractal 
液晶与显示
2019, 34(12): 1182
作者单位
摘要
东北林业大学信息与计算机工程学院, 黑龙江 哈尔滨 150040
采用体视显微高光谱成像方法, 构建木材树种分类识别模型。 利用SOC710VP体视显微高光谱图像采集系统获取可见光/近红外(372.53~1 038.57 nm)波段内的木材高光谱图像。 首先, 采用ENVI软件提取木材样本感兴趣区域(ROI)的平均光谱, 分别采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对光谱数据进行降维。 再利用支持向量机(SVM)分别建立木材样本采集波段和特征波长下的分类模型。 然后, 在空间维采用第一主成分图像, 计算基于灰度共生矩阵(GLCM)的木材纹理特征。 在0°, 45°, 90°和135°四个方向计算能量、 熵、 惯性矩、 相关性等16个特征参数后输入SVM进行木材树种分类处理。 最后, 采用四个复合核函数SVM进行光谱维和空间维的特征融合及分类识别。 20个树种的分类实验结果表明, CARS的特征波长选择效果和运行速度较好一些, 采用普通SVM进行木材光谱维特征分类处理时, 测试集分类准确率达到了92.166 7%。 采用基于GLCM的木材空间维纹理特征时, 采用普通SVM的测试集分类准确率是60.333 0%, 具有较低的分类精度。 在将光谱维和空间维纹理特征进行数据融合及分类处理时, 采用复合核函数SVM分类具有更好的效果。 采用第二个复合核函数的SVM分类精度最高, 测试集分类正确率是94.166 7%, 运行时间为0.254 7 s。 另外, 采用第一个和第三个复合核函数的SVM的测试集分类准确率分别是93.333 3%和92.610 0%, 运行时间分别为0.180 0和0.260 2 s。 可以看出, 采用这3种复合核函数的SVM进行木材树种分类, 分类精度都高于采用普通SVM的光谱维或者空间维的分类识别精度。 因此, 利用体视显微高光谱成像和复合核函数SVM可以提高木材树种分类精度, 为木材树种快速分类提供了参考。
木材树种识别 高光谱成像 复合核函数 特征融合 Wood species classification Hyper-spectral imaging Composite kernel SVM Feature fusion SVM 
光谱学与光谱分析
2019, 39(12): 3776
作者单位
摘要
1 首都师范大学, 北京 100048
2 中国林业科学院木材工业研究所, 北京 100091
测量了不同产地及品种的89个木材样品的近红外光谱, 并分别使用反向传播人工神经网络(back propagation artificial neural networks, BPANN)与广义回归神经网络(generalized regression neural network, GRNN)建立了NIRS树种识别模型。 通过方差分析分别选择两种神经网络所用参数, 并采用最优参数进行网络训练。 考虑到样品光谱的差异, 对含不同水平白噪声与不同水平偏置的光谱进行模拟, 并使用建立的模型对模拟光谱进行预测。 发现两种神经网络模型均有较好的预测结果, 其中BPANN模型, 对含偏置水平不高于2%、 噪声水平不高于4%的模拟光谱识别正确率在97%以上; GRNN模型, 对含偏置水平不高于2%、 噪声水平不高于4%的模拟光谱识别正确率在99%以上。
人工神经网络 木材树种识别 近红外光谱 方差分析 Artificial neural networks Wood species identification NIRS Analysis of variance 
光谱学与光谱分析
2012, 32(9): 2377

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!