作者单位
摘要
1 农业部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097南京农业大学国家信息农业工程技术中心, 江苏 南京 210095
2 农业部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097
3 河南工程学院土木工程学院, 河南 郑州 451191
作物氮含量影响作物的生长状况, 合适的施氮量可以促进作物生长和提高作物产量, 因此准确、 快速地监测作物的氮含量十分必要。 旨在探索将无人机成像高光谱获取的植被指数和光谱特征参数相结合以提高冬小麦关键生育期氮含量估算精度的潜力。 首先, 以无人机为遥感平台, 搭载高光谱传感器获取了冬小麦拔节期、 挑旗期、 开花期和灌浆期4个主要生育期的高光谱遥感影像, 并实测了各生育期的氮含量数据。 其次, 基于预处理后的高光谱影像, 提取冬小麦各生育期的冠层反射率数据, 并构造能较好反映作物氮素营养状况的12种植被指数和12种光谱特征参数。 然后, 计算了各光谱参数与冬小麦氮含量的相关性, 并筛选出各生育期与氮含量相关性较强的植被指数和光谱特征参数; 最后, 利用逐步回归分析(SWR)构建基于植被指数、 植被指数结合光谱特征参数的氮含量估算模型。 结果显示: (1)选取的大部分植被指数和光谱特征参数与冬小麦氮含量都有较高的相关性。 其中, 植被指数的相关性高于光谱特征参数; (2)基于单个植被指数或光谱特征参数估算冬小麦虽然可行, 但精度还有待进一步提高; (3)与单一植被指数或光谱特征参数相比, 植被指数结合光谱特征变量利用SWR方法构建的氮含量估算模型的精度和稳定性更高(拔节期: 建模R2=0.64, RMSE=24.68%, NRMSE=7.96%, 验证R2=0.77, RMSE=23.13%, NRMSE=7.81%; 挑旗期: 建模R2=0.81, RMSE=15.79%, NRMSE=7.41%, 验证R2=0.84, RMSE=15.10%, NRMSE=7.08%; 开花期: 建模R2=0.78, RMSE=9.88%, NRMSE=5.66%, 验证R2=0.85, RMSE=9.12%, NRMSE=4.76%; 灌浆期: 建模R2=0.49, RMSE=13.68%, NRMSE=9.85%, 验证R2=0.40, RMSE=18.29%, NRMSE=14.73%)。 研究结果表明, 结合无人机成像高光谱获取的植被指数和光谱特征参数构建的冬小麦氮含量估算模型精度和稳定性较高, 研究结果可为冬小麦氮含量的空间分布和精准管理提供参考。
无人机 冬小麦 高光谱 氮含量 逐步回归 光谱特征参数 Unmanned aerial vehicle Winter wheat Hyperspectral Nitrogen content Stepwise regression Spectral feature parameters 
光谱学与光谱分析
2023, 43(10): 3239
作者单位
摘要
1 昆明理工大学国土资源工程学院,云南 昆明 650093
2 昆明理工大学计算中心,云南 昆明 650500
针对卷积神经网络(CNN)在分类高光谱图像时空-谱特征利用率不足和分类效率低的问题,提出基于超像素分割与CNN的高光谱图像分类方法。首先利用主成分分析(PCA)提取图像的前12个成分后对前3个主成分进行滤波,对滤波后的3个波段进行超像素分割;然后将样本点映射到超像素内,使其以超像素而不是像素为基本的分类单元;最后利用CNN进行图像分割。在两个公共的数据集WHU-Hi-Longkou和WHU-Hi-HongHu上进行实验,实验结果表明,相比仅利用光谱信息的方法,融合空-谱特征信息的方法的精度得到提升,在两个数据集上的分类精度分别达99.45%和97.60%。
超像素 卷积神经网络 主成分分析 空-谱特征融合 滤波 
激光与光电子学进展
2023, 60(16): 1610010
作者单位
摘要
1 辽宁工程技术大学软件学院,辽宁 葫芦岛 125105
2 湖州师范学院信息工程学院,浙江 湖州 313000
针对高光谱影像波段间相关度强、光谱和空间结构复杂性高和训练样本数量有限等问题,提出一种边缘保护滤波和深度残差网络结合的分类方法。首先采用联合双边滤波增强地物的边缘结构以提取出高质量的空间特征,将空间特征与光谱特征融合得到原始空谱特征;然后构建二维卷积神经网络,在卷积层中加入跳层连接将模型改进为一种深度残差网络模型;最后采用该模型提取影像的深层空谱特征并将其输入到Softmax分类器完成影像分类。实验在两个数据集上与相关先进方法比较,结果表明,本文方法考虑到了地物边缘结构的重要作用,缓解了卷积神经网络分类中的过拟合现象,显著提高了高光谱影像的分类精度。
成像系统 高光谱遥感影像 空谱特征 联合双边滤波 卷积神经网络 残差网络 
激光与光电子学进展
2022, 59(16): 1611005
作者单位
摘要
1 空军航空大学, 吉林 长春 130022
2 东北师范大学地理科学学院, 吉林 长春 130024
3 中国人民解放军95910部队, 甘肃 酒泉 735000
4 中国人民解放军95795部队, 广西 桂林 541000
针对现有基于阶梯网络(LN)的高光谱图像分类算法无法充分提取图像的空谱特征而导致分类精度降低的问题,提出一种基于改进阶梯网络的高光谱半监督分类算法。首先将三维卷积神经网络(3D-CNN)与长短时记忆(LSTM)网络结合,提出一种新的空谱特征提取(3D-CNN-LSTM)网络,使用该网络分步提取局部空间特征与光谱特征。然后使用3D-CNN-LSTM网络对阶梯网络的编码器与解码器进行改进,提出一种3D-CNN-LSTM-LN半监督分类算法,增强阶梯网络的特征提取能力。最后在Pavia University和Indian Pines两个数据集上对不同算法进行实验。实验结果表明,在小样本条件下,所提算法取得了最佳的分类效果,验证了所提算法具有优越性。
遥感 高光谱图像 半监督分类 阶梯网络 空谱特征提取 
激光与光电子学进展
2021, 58(24): 2428008
刘世界 1,2李春来 1,*徐睿 1唐国良 1,2[ ... ]王建宇 1,2,3,**
作者单位
摘要
1 中国科学院上海技术物理研究所空间主动光电技术重点实验室,上海 200083
2 中国科学院大学,北京 100049
3 国科大杭州高等研究院,浙江 杭州 310024
4 上海科技大学信息科学与技术学院,上海 200020
基于压缩感知的光谱成像系统需要合适的算法解码采样数据才能得到最终的光谱成像数据,传统单稀疏域变换算法会带来光谱细节损失等问题。针对该问题,本文提出了利用双稀疏域联合求解的方法(JDSD),将信号分解为低频部分和高频部分,并针对不同频率信号特点分别进行稀疏恢复,进而解码求解以实现高精度恢复信号。在数据验证中,首先利用OMP算法在频域内对光谱信息轮廓进行恢复,利用IRLS算法在空间域内对光谱细节进行补偿,分析了不同稀疏变换对于参数设置的影响,测试了不同算法组合的JDSD对于测试数据的恢复结果。对于500种光谱数据仿真测试表明,双稀疏域联合求解可将光谱恢复保真度大大提升,20%采样率情况下,SAM和GSAM指标由传统方法的0.625和0.515分别提升为0.817和0.659,80%采样率情况下,SAM和GSAM指标由传统方法的0.863和0.808分别提升为0.940和0.897。JDSD算法可以使得光谱吸收峰等细节特征得到高精度保持,对于基于光谱的特征分析、物质识别等应用具有十分重要的意义。
光谱成像 光谱特征恢复 计算成像 压缩感知 spectral imaging spectral feature recovery computational imaging compressed sensing 
红外与毫米波学报
2021, 40(5): 685
王承琨 1,*赵鹏 1,2
作者单位
摘要
1 东北林业大学信息与计算机工程学院, 黑龙江 哈尔滨 150040
2 广西科技大学计算机科学与通信工程学院, 广西 柳州 545006
木材是人们生活中必不可少的可再生资源, 同时在建筑、 工艺、 家具、 结构材料等方面有着举足轻重的地位。 市场中常见的木材品种繁多, 其品质和价格千差万别, 使用智能化技术对木材进行正确的分类不仅可以防止不法商贩“以次充好”, 也可以大幅度降低木材分类人员的工作难度。 通过木材的遗传信息和解剖学信息可以得到较为准确的木材分类结果, 这类方法识别工艺相对复杂, 对非专业人员并不友好。 借助木材切面的图像信息或光谱信息可以简单方便地对木材进行分类, 然而由于不同种木材之间存在的近似性, 这类方法往往分类精度不高或只适用于某些阔叶木材。 提出了一种基于木材横切面图像信息和光谱信息的多特征木材分类算法, 首先分别采集木材横切面的光谱信息以及图像信息; 再使用Segnet图像分割方法将待分类样本分成含管孔木材和不含管孔木材两组, 并对含管孔样本组中的木材进行管孔分割; 然后对含管孔样本组中的木材提取管孔特征、 光谱特征以及纹理特征, 对无管孔样本组木材提取光谱特征和纹理特征; 最后根据这些特征使用支持向量机分别对木材进行分类并记录其木材的分类结果, 对分类结果不一致的样本使用相似性判据判断最佳分类结果。 为了验证该方法的有效性, 以20种常见的阔叶木材和针叶木材的混合样本集为研究对象, 对其进行了分类。 实验结果显示三种特征均可以对木材进行分类, 单独使用光谱特征、 纹理特征以及管孔特征对木材进行分类的最高正确率分别为93.00%, 89.33% 和69.23%, 通过相似测度的判断后三个特征可以相互补充从而进一步提高木材的分类正确率, 最高正确率可达98.00%。 综上所述, 该方法可以对包含阔叶木材和针叶木材的混合样本集中的木材进行分类, 木材横切面的光谱特征、 纹理特征以及管孔特征可以相互补充, 从而使分类正确率进一步的提高。 与目前的主流木材分类方法进行对比, 发现该算法的分类正确率高于其他算法。
木材树种识别 纹理特征 管孔特征 光谱特征 特征融合 Wood species classification Textural feature Pore feature Spectral feature Feature-level fusion 
光谱学与光谱分析
2021, 41(6): 1713
作者单位
摘要
西安电子科技大学综合业务网理论及关键技术国家重点实验室, 陕西 西安 710071
高光谱与全色影像融合旨在通过融合高空间分辨率的全色影像与低空间分辨率的高光谱影像来获得高空间分辨率的高光谱影像。基于深度卷积神经网络(CNN),提出了一种遥感影像融合方法,利用两个独立的分支网络逐级从高光谱和全色影像中提取光谱和空间特征。该融合网络由两个分支网络和一个主线网络组成,利用两个分支网络分别从高光谱与全色影像中提取空谱特征,主线网络基于分支网络提取的特征,重建得到最终融合的高空间分辨率的高光谱影像。在CAVE和Pavia Center数据集上分别进行了实验验证,通过对比可以发现,所提出的融合算法在空间细节和光谱保真度上较当前主流算法均表现出更优异的性能。
图像处理 高光谱影像 融合 卷积神经网络 空谱特征 
光学学报
2021, 41(7): 0710001
作者单位
摘要
为了提高木材树种分类的正确率, 提出了一种基于I-BGLAM纹理特征和光谱特征融合的高光谱图像的木材树种分类方法。 实验数据是利用SOC710VP高光谱成像仪获取的可见光/近红外(372.53~1 038.57 nm)范围内的高光谱图像。 首先, 利用基于OIF的特征波段选择方法降低高光谱图像的维数, 选择出含有信息量大的波段。 其次, 对选择出的波段图像使用NSCT及NSCT逆变换得到融合图像, 对得到的融合图像使用I-BGLAM提取其纹理特征。 与此同时, 对高光谱图像的全波段求取平均光谱并进行S-G(Savitzky-Golay)平滑得到光谱特征。 最后, 将得到的纹理特征和光谱特征融合后送进极限学习机(ELM)中进行分类。 此外, 还和基于灰度共生矩阵(GLCM)的木材识别的传统方法以及近几年木材树种识别领域内被提出的主流方法进行了比较。 该研究主要创新点有两个: 一是将强纹理提取器I-BGLAM用于高光谱图像中提取其纹理特征; 二是提出一种新的特征融合的模型用于高光谱图像的分类。 针对8个树种的实验结果表明, 单独使用I-BGLAM提取的纹理特征来进行分类的正确率最高可到达88.54%, 而使用GLCM提取纹理特征的传统方法正确率最高只有76.04%, 该结果可以得出本文使用I-BGLAM在纹理特征提取方面要优于GLCM, 这为后面建立的融合模型打下很好的基础, 单独使用平均光谱特征来分类的正确率最高可以达到92.71%, 使用所提出的特征融合方法所得到的分类正确率最高可达到100%, 这说明使用所提出的融合模型来分类要比以前单独使用某一种特征的分类模型要好。 此外, 使用所提出的方法得到的分类正确率要高于本领域内其他两种主流的识别方法。 因此, 所提出的基于I-BGLAM纹理特征和光谱特征融合的方法能够提高木材树种分类的正确率, 该方法在木材树种分类方面有着一定的利用价值。
高光谱图像 纹理特征 光谱特征 特征融合 木材树种分类 Hyper-spectral imaging I-BGLAM Texture feature Spectral feature Feature fusion Classification of wood species I-BGLAM 
光谱学与光谱分析
2021, 41(2): 599
作者单位
摘要
中国农业大学信息与电气工程学院食品质量与安全北京实验室, 北京 100083
土壤水分是影响农业生产的重要因素之一, 对农作物生长发育情况和最终产量起着关键的作用, 然而农业用水浪费现象普遍存在, 预计至2020年我国灌溉水利用系数仅为0.55, 远低于0.7~0.8的世界先进水平, 因此准确有效地判断土壤含水量丰缺情况对农业生产实践具有重要意义, 光谱技术利用物体特征谱线的不同, 能够同时获取目标的图像信息和光谱信息, 从而更直观地表达目标的特征, 从而精确、 快速、 无损地对土壤水分的含量进行动态的检测, 该技术极大地促进了农业的精准化、 智能化和现代化, 在土壤水分含量检测中占有重要地位。 文章综述了国内外土壤水分含量检测的最新文献, 对基于光谱技术的土壤水分含量检测的研究进展进行了系统地讨论, 分析了传统方法的不足, 并阐述了光谱成像技术的优势: (1)实时性; (2)无损性; (3)精确性; 及其在土壤水分含量检测中的局限性: (1)土壤的构造复杂; (2)泛化能力不足; (3)气候条件制约。 重点阐述了光谱在土壤水分检测中的三个关键技术: (1)光谱数据预处理技术, 重点对比了常见的预处理技术原理及其效果; (2)光谱特征提取技术, 对比了常见的特征光谱提取方法, 重点分析了土壤水分的敏感波段; (3)光谱建模技术, 重点对比了土壤水分含量检测的线性和非线性模型, 分析其原理、 应用范围及模型精度, 得出非线性模型将成为光谱技术在土壤水分含量检测的主流建模方法。 最后依据上述分析, 对光谱技术在土壤水分检测领域中的应用前景和研究趋势进行了展望: 一是要提高该技术的泛化能力和鲁棒性, 建立可用于多种土壤类型的水分检测模型; 二是要建立大范围区域并动态实时更新的土壤光谱数据库, 为提高模型精度做好数据基础。
光谱技术 土壤水分检测 光谱预处理 光谱特征提取 光谱建模 Spectral technology Soil moisture content detection Spectral pretreatment Spectral feature extraction Spectral modeling 
光谱学与光谱分析
2020, 40(12): 3705
作者单位
摘要
1 中国科学院遥感与数字地球研究所, 北京 100101
2 中国科学院大学, 北京 100049
啤酒新鲜度是市场消费者非常关注的品质指标, 也是各大啤酒公司的核心竞争力。 传统啤酒新鲜度检测方法一般需要十分昂贵的分析仪器和化学试剂, 消耗大量时间, 检测成本较高。 随着啤酒的老化, 啤酒中的成分物质亦将发生变化, 其对应的光谱特征也将发生改变。 利用光谱分析技术, 挖掘表征啤酒老化的光谱特征, 构建啤酒新鲜度指数(BFI), 可实现啤酒新鲜度的快速、 无损检测。 将新鲜啤酒分三等份装入相同容器, 其中2份为避光保存, 1份为光照下保存, 用PSR-3500光谱仪对啤酒样品进行光谱采集, 每隔24 h采集一次, 共采集6次, 获得不同新鲜程度啤酒的光谱数据。 对采集的光谱数据进行特征波段选择、 包络线去除等预处理, 增强后的光谱显示842.0 nm处的波谷深度随放置时间的增长而变小, 因此基于842.0 nm的波谷深度构建反应啤酒新鲜度的光谱特征指数(BFI)。 实验结果表明, BFI值随放置时间的增长而逐渐下降, 且避光保存的两组样品BFI值下降速率基本一致, 而由于光照加速了啤酒中的老化反应, 使得光照保存的样品BFI值下降速率较快, 结果显示BFI能够较好指示啤酒的新鲜程度。 此外, 通过模拟不同光谱分辨率与信噪比水平, 评价BFI对光谱检测设备性能的敏感性。 具体地, 利用高斯函数分布函数和平均分布函数分别生成光谱分辨率为5~40 nm的数据和信噪比为10~60 dB的数据, 对其进行特征波段选择、 包络线去除等预处理, 计算BFI值并进行分析。 实验显示, 当光谱分辨率低于15 nm、 信噪比低于10 dB时, 样品842.0 nm的光谱吸收特征逐渐被掩盖, BFI将难以指示啤酒的新鲜程度。 然而, 只要在798~872 nm及附近波段光谱分辨率优于10 nm、 信噪比不低于35 dB, BFI即可准确指示啤酒新鲜度, BFI对光谱仪的性能要求并不严苛。 综上所述, BFI能够准确指示啤酒新鲜度, 服务于便携式啤酒新鲜度光谱检测设备的设计与研发, 促进光谱分析技术在啤酒品质无损检测及相关领域的应用推广。
啤酒新鲜度 光谱分析技术 啤酒新鲜度指数 无损检测 Beer freshness Spectral analysis technology Spectral feature index Nondestructive 
光谱学与光谱分析
2020, 40(7): 2273

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!