红外与毫米波学报, 2020, 39 (1): 56, 网络出版: 2020-03-12  

基于65 nm标准CMOS工艺的3.0 THz 探测器

A 3.0 THz detector in 65 nm standard CMOS process
方桐 1,3刘力源 1,3,*刘朝阳 1,3冯鹏 1,3李媛媛 2,3刘俊岐 2,3刘剑 1,3吴南健 1,3
作者单位
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing00083, China
2 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing100083, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
引用该论文

方桐, 刘力源, 刘朝阳, 冯鹏, 李媛媛, 刘俊岐, 刘剑, 吴南健. 基于65 nm标准CMOS工艺的3.0 THz 探测器[J]. 红外与毫米波学报, 2020, 39(1): 56.

Tong FANG, Li-Yuan LIU, Zhao-Yang LIU, Peng FENG, Yuan-Yuan LI, Jun-Qi LIU, Jian LIU, Nan-Jian WU. A 3.0 THz detector in 65 nm standard CMOS process[J]. Journal of Infrared and Millimeter Waves, 2020, 39(1): 56.

参考文献

[1] WoolardD L, JensenJ O, HwuR J. Terahertz science and technology for military and security applications [M]. world scientific, 2007.

[2] CassarQ, Al-IbadiA, MavaraniL, et al. Pilot study of freshly excised breast tissue response in the 300–600 GHz range[J]. Biomedical optics express, 2018, 9(7): 2930-2942.

[3] HoshinaH, SasakiY, HayashiA, et al. Noninvasive mail inspection system with terahertz radiation [J]. Applied spectroscopy, 2009, 63(1): 81-86.

[4] HosakoI, OdaN. Terahertz imaging for detection or diagnosis [J]. SPIE Newsroom, 2011, 102.1201105: 003651.

[5] LeeY S. Principles of terahertz science and technology [M]. Springer Science & Business Media, 2009.

[6] KreislerA J, GaugueA. Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range[J]. Superconductor Science and Technology, 2000, 13(8): 1235.

[7] Golay detector datasheet for GC-1with HDPE windowP, IncTydex, accessed on Mar. 2019. [Online]. Available:

[8] LiuZ, LiuL, YangJ, et al. A CMOS fully integrated 860-GHz terahertz sensor [J]. IEEE Transactions on Terahertz Science and Technology, 2017, 7(4): 455-465.

[9] DyakonovM I, ShurM S. Plasma wave electronics: novel terahertz devices using two dimensional electron fluid[J]. IEEE Transactions on Electron Devices, 1996, 43(10): 1640-1645.

[10] KnapW, KachorovskiiV, DengY, et al. Nonresonant detection of terahertz radiation in field effect transistors [J]. Journal of Applied Physics, 2002, 91(11): 9346-9353.

[11] KnapW, TeppeF, MezianiY, et al. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors [J]. Applied Physics Letters, 2004, 85(4): 675-677.

[12] OjeforsE, PfeifferU R, LisauskasA, et al. A 0.65 THz focal-plane array in a quarter-micron CMOS process technology [J]. IEEE Journal of Solid-State Circuits, 2009, 44(7): 1968-1976.

[13] Al HadiR, SherryH, GrzybJ, et al. A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS [J]. IEEE Journal of Solid-State Circuits, 2012, 47(12): 2999-3012.

[14] FangT, DouR, LiuL, et al. A 25 fps 32× 24 Digital CMOS Terahertz Image Sensor[C]. IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, 2018: 87-90.

[15] International Telecommunication Union ITU-R P.676-11: Attenuation by Atmospheric Gases (ITU, 2016.

[16] The HITRAN Database. accessed on Mar. 2019. [Online]. Available:

[17] FangT, LiuZ, LiuL, et al. Detection of 3.0 THz wave with a detector in 65 nm standard CMOS process[C]. IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, 2017: 189-192.

[18] GutinA, KachorovskiiV, MuravievA, & ShurM. Plasmonic terahertz detector response at high intensities[J]. Journal of Applied Physics, 2012, 112(1): 014508.

[19] KhmyrovaI, SeijyouY. Analysis of plasma oscillations in high-electron mobility transistorlike structures: Distributed circuit approach[J]. Applied Physics Letters, 2007, 91(14): 143515.

[20] LisauskasA, PfeifferU, ÖjeforsE, et al. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors[J]. Journal of Applied Physics, 2009, 105(11): 114511.

[21] RazaviB. Design of Analog CMOS Integrated Circuits[M]. Xi'an Jiaotong University Press(毕查德, 拉扎维, 陈贵灿, . 模拟 CMOS 集成电路设计. 西安交通大学出版社), 2003.

[22] LisauskasA, GlaabD, RoskosH G, et al. Terahertz imaging with Si MOSFET focal-plane arrays[C]. Terahertz Technology and Applications II. International Society for Optics and Photonics, 2009, 7215: 72150J.

[23] Al HadiR, SherryH, GrzybJ, et al. A broadband 0.6 to 1 THz CMOS imaging detector with an integrated lens [C]. IEEE MTT-S International Microwave Symposium. IEEE, 2011: 1-4.

[24] JohnD. Kraus. Antennas. For All Applications[M]. 3rd ed. Beijing: Publishing House of Electronic Industry(约翰·克劳斯. 天线. 北京电子工业出版社)

[25] KompfnerR, WilliamsN T. Backward-wave tubes[J]. Proceedings of the IRE, 1953, 41(11): 1602-1611.

[26] WardJ, SchlechtE, ChattopadhyayG, et al. Capability of THz sources based on Schottky diode frequency multiplier chains[C]. IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535). IEEE, 2004, 3: 1587-1590.

[27] LIL, CHENL, ZHUJ, et al. Terahertz quantum cascade lasers with > 1 W output powers[J]. Electronics Letters, 2014, 50(4):309-310.

[28] SR 830 User's Manual. accessed on Mar. 2019. [Online]. Available:

[29] TaukR, TeppeF, BoubangaS, et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power[J]. Applied Physics Letters, 2006, 89(25): 253511.

[30] MackowiakV, PeupelmannJ, MaY, et al. Nepnoise equivalent power[M]//Thorlabs, Inc. 2015.

[31] ZdanevičiusJ, ČibiraitėD, IkamasK, et al. Field-Effect Transistor Based Detectors for Power Monitoring of THz Quantum Cascade Lasers[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(6): 613-621.

[32] BauerM, VenckevičiusR, KašalynasI, et al. Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz[J]. Optics express, 2014, 22(16): 19235-19241.

[33] BoppelS, LisauskasA, BauerM, et al. Optimized Tera-FET detector performance based on an analytical device model verified up to 9 THz [C]. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013 38th International Conference on. IEEE, 2013: 1-1.

[34] IkamasK, LisauskasA, BoppelS, et al. Efficient detection of 3 THz radiation from quantum cascade laser using silicon CMOS detectors[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(10): 1183-1188.

[35] AhmadZ, LisauskasA, RoskosH G. 9.74-THz electronic Far-Infrared detection using Schottky barrier diodes in CMOS[C]. IEEE International Electron Devices Meeting. IEEE, 2014: 4.4. 1-4.4. 4.

[36] BoppelS, LisauskasA, MundtM, et al. CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz [J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 3834-3843.

方桐, 刘力源, 刘朝阳, 冯鹏, 李媛媛, 刘俊岐, 刘剑, 吴南健. 基于65 nm标准CMOS工艺的3.0 THz 探测器[J]. 红外与毫米波学报, 2020, 39(1): 56. Tong FANG, Li-Yuan LIU, Zhao-Yang LIU, Peng FENG, Yuan-Yuan LI, Jun-Qi LIU, Jian LIU, Nan-Jian WU. A 3.0 THz detector in 65 nm standard CMOS process[J]. Journal of Infrared and Millimeter Waves, 2020, 39(1): 56.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!