光子学报, 2019, 48 (2): 0227001, 网络出版: 2019-03-23  

手征介质与陈绝缘体界面附近原子的自发辐射研究

Spontaneous Emission Characteristics of Atom near the Interface of Chiral Metamaterial and Chern Insulator
作者单位
1 杭州电子科技大学 通信工程学院, 杭州 310018
2 同济大学 物理科学与工程学院 先进微结构材料教育部重点实验室, 上海 200092
摘要
对手征特异材料介质与陈绝缘体材料界面附近二能级原子的自发辐射特性进行了研究.推导计算了手征介质界面及其与陈绝缘体材料界面的反射系数矩阵, 并根据并矢格林函数求得此环境下二能级原子自发衰减率的表达式.对手征介质和陈绝缘体材料特性参数影响下的原子自发辐射进行了数值计算, 分别对平行和垂直于界面的偶极子自发衰减率进行讨论, 并对辐射模式和消逝模式下的自发辐射进行了分析.结果表明, 由于手征参量的存在, 手征介质界面附近的原子自发衰减率与普通介质相比被增强.陈绝缘体则使得界面附近原子的自发辐射被明显抑制, 且当手征参量较大时, 陈绝缘体的抑制效应更加显著.
Abstract
The spontaneous emission characteristics of the two-level atom near the surface of Chern insulator and chiral metamaterial medium is investigated. The matrices of the reflection coefficients of the chiral medium surface and the interface of chiral medium and Chern insulator are calculated, and the expression of the spontaneous decay rate of the two-level atom in this environment is obtained according to the dyadic Green's function. The atomic spontaneous emission under the influence of the characteristic parameters of the chiral medium and Chern insulator is numerically analyzed. The spontaneous decay rate of the dipoles parallel and perpendicular to the interface is discussed respectively, and the spontaneous emission in the radiation mode and the evanescent mode is analyzed respectively. The results show that the spontaneous decay rate of atoms near the interface of the chiral medium is enhanced compared with the common dielectrics due to the presence of chiral parameters. Under the influence of Chern insulator, the spontaneous emission of atoms near the interface is conspicuously inhibited, and for the larger chiral parameter, the suppression effect of the Chern insulator is more significant.
参考文献

[1] PURCELL E M, TORREY H C, POUND R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical Review, 1946, 69(1/2): 37-38.

[2] DUNG H T, BUHMANN S Y, KNLL L,et al. Electromagnetic-field quantization and spontaneous decay in left-handed media[J]. Physical Review A, 2003, 68(4): 113-114.

[3] XU J P, YANG Y P, LIN Q,et al. Spontaneous decay of a two-level atom near the left-handed slab[J]. Physical Review A, 2009, 79(4): 043812.

[4] ZENG X, LI G, YANG Y,et al. Enhancement of the vacuum Rabi oscillation via surface plasma modes in single-negative metamaterials[J]. Physical Review A, 2012, 86(9): 033819.

[5] ZHU S Y, YANG Y, CHEN H,et al. Spontaneous radiation and lamb shift in three-dimensional photonic crystals[J]. Physical Review Letters, 2000, 84(10): 2136-2139.

[6] LIN Z, PICK A, LONCAR M,et al. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals[J]. Physical Review Letters, 2016, 117(10): 107402.

[7] SCHULZ K M, VU H, SCHWAIGER S, et al. Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials[J]. Physical Review Letters, 2016, 117(8): 085503.

[8] 祁剑南, 黄志祥, 王翰林, 等. 基于频域有限差分法的二维自发辐射特性研究[J]. 光子学报, 2015, 43(1): 0125002.

    QI Jian-nan, HUANG Zhi-xiang, WANG Han-lin,et al. Systematic study of finite-difference frequency-domain method for spontaneous emission in a two-dimensional environment[J]. Acta Photonica Sinica, 2015, 43(1): 0125002.

[9] 任昊, 王胜, 王丽华, 等. 含石墨烯二维金属结构中的自发辐射研究[J]. 光子学报, 2017, 46(7): 0727002.

    REN Hao, WANG Sheng, WANG Li-hua, et al. Study on the spontaneous emission in a two-dimensional metal structure with graphene[J]. Acta Photonica Sinica, 2017, 46(7): 0727002.

[10] PENDRY J B. A chiral route to negative refraction[J].Science, 2004, 306(5700): 1353-1355.

[11] TRETYAKOV S, SIHVOLA A, JYLH L. Backward-wave regime and negative refraction in chiral composites[J].Photonics and Nanostructures - Fundamentals and Applications, 2005, 3(2): 107-115.

[12] ZHAO R, ZHANG L, ZHOU J, et al. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index[J]. Physical Review B, 2010, 83(3): 63-75.

[13] SHADRIVOV I V, FEDOTOV V A, POWELL D A, et al. Electromagnetic wave analogue of an electronic diode[J]. New Journal of Physics, 2011, 13(3): 033025.

[14] ZHAO Y, BELKIN M A, AL A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.[J].Nature Communications, 2012, 3(3): 870.

[15] XU K K, XIAO Z Y, TANG J Y,et al. Dispersionless and giant optical activity in terahertz chiral metamaterials[J]. Plasmonics, 2016, 11(5): 1257-1264.

[16] HALDANE F D M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly"[J]. Physical Review Letters, 1988, 61(18): 2015-2018.

[17] THOULESS D J, KOHMOTO M, NIGHTINGALE M P,et al. Quantized hall conductance in a two-dimensional periodic potential[J]. Physical Review Letters, 1982, 49(6): 405-408.

[18] LIU X P, CHEN W C, WANG Y F,et al. Topological quantum phase transitions on the kagomé and square–octagon lattices[J]. Journal of Physics: Condensed Matter, 2013, 25(30): 305602.

[19] SUN K, GU Z, KATSURA H, et al. Nearly flatbands with nontrivial topology[J]. Physical Review Letters, 2011, 106(23): 236803.

[20] CHEN W C, LIU R, WANG Y F,et al. Topological quantum phase transitions and topological flat bands on the star lattice[J]. Physical Review B, 2012, 86(8): 085311.

[21] WANG Y F, YAO H, GONG C D,et al. Fractional quantum Hall effect in topological flat bands with Chern number two[J]. Physical Review B, 2012, 86(20): 201101.

[22] STERDYNIAK A, REPELLIN C, BERNEVIG B A,et al. Series of Abelian and non-Abelian states in C>1 fractional Chern insulators[J]. Physical Review B, 2013, 87(20): 205137.

[23] JIANG H, QIAO Z, LIU H,et al. Quantum anomalous Hall effect with tunable Chern number in magnetic topological insulator film[J]. Physical Review B, 2012, 85(4): 045445.

[24] TOMAS M S. Green function for multilayers: Light scattering in planar cavities[J].Physical Review A, 1995, 51(3): 2545-2559.

王驰, 曾然, 侯金鑫, 李浩珍, 李齐良, 毕美华, 羊亚平. 手征介质与陈绝缘体界面附近原子的自发辐射研究[J]. 光子学报, 2019, 48(2): 0227001. WANG Chi, ZENG Ran, HOU Jin-xin, LI Hao-zhen, LI Qi-liang, BI Mei-hua, YANG Ya-ping. Spontaneous Emission Characteristics of Atom near the Interface of Chiral Metamaterial and Chern Insulator[J]. ACTA PHOTONICA SINICA, 2019, 48(2): 0227001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!