光学 精密工程, 2018, 26 (3): 672, 网络出版: 2018-04-25   

超声波键合熔接结构及压力自平衡夹具

A joint structure and self-balancing jig based on ultrasonic bonding
作者单位
大连理工大学 辽宁省微纳米及系统重点实验室, 辽宁 大连 116024
摘要
聚合物微流控芯片对键合精度、键合强度及键合效率要求高。为了避免超声波键合中微通道被堵塞, 解决键合过程中由调平精度和高频振动引起的键合强度低、键合压力分布不均的问题, 设计了一种基于超声波键合的熔接结构和压力自平衡夹具。首先, 利用感压胶片对压力自平衡夹具和不带自平衡功能的夹具的压力分布进行测量, 并定义了压力分布系数进行量化。其次, 利用两种夹具分别对设计芯片进行超声键合, 并利用工具显微镜对焊线和微通道截面进行观测。最后, 对两组芯片进行键合强度测试和密封性测试。实验结果表明:所设计的熔接接头结构对微通道的控制精度可达2.0 μm。压力自平衡夹具结构简单可靠, 可提高压力均匀性35.20%~43.18%,并使得焊线均匀一致, 同时可提高键合强度15.3%~45.1%, 并保证密封性。该熔接结构和压力自平衡夹具可满足聚合物微流控芯片的控制精度、键合强度、压力均匀性及其密封性的要求。
Abstract
Polymer microfluidic chips have high requirements for bonding precision, bonding strength and bonding efficiency. In order to avoid the clogging of microchannel by fusion and solve the problems of low bonding strength, uneven pressure distribution caused by leveling precision and high-frequency vibration in the process of ultrasonic bonding, the joint structure and self-balancing jig were designed and fabricated. First, based on the self-balancing jig and conventional jig with no leveling function, the pressure distribution coefficient was defined and measured by prescale film. Moreover, the chips we designed were bonded with two types of jigs respectively. The bonding line and cross-section of microchannels were measured by measuring microscope. Last, these chips were tested by electric tensile tester and sealing test. Experimental results indicate that the precision of controlling microchannel can reach about 2.0 μm. The self-balancing jig can improve pressure distribution about 35.20%-43.18% with simple structure and easy operation, and make the bonding line uniform. The bonding strength increases about15.3%-45.1% with excellent sealing performance. It concludes that the joint structure and self-balancing jig can satisfy the requirements of controlling precision, bonding strength, pressure distribution and sealing performance.
参考文献

[1] KISTRUP K, POULSENC E, Hansen M F, et al.. Ultrasonic welding for fast bonding of self-aligned structures in lab-on-a-chip systems [J]. Lab on a Chip, 2015, 15(9): 1998-2001.

[2] 范建华, 邓永波, 宣明, 等. PC微流控芯片黏接筋与溶剂的协同辅助键合[J]. 光学 精密工程, 2015, 23(3): 708-713.

    FAN J H, DENG Y B, XUAN M, et al.. Synergistic bonding process of solvent and tendon for PC-based microfluidic chips[J]. Opt. Precision Eng.., 2015, 23(3): 708-713. (in Chinese)

[3] THORSEN T, MAERKL S J, QUAKE S R, et al.. Microfluidic large-scale integration[J]. Science, 2002, 298(5593): 580-584.

[4] 张宗波. 聚合物微流控芯片超声波键合机理与方法研究[D]. 大连: 大连理工大学, 2010.

    ZHANG Z B. Study on the mechanism and methods of ultrasonic bonding for polymer microfludic chips[D]. Dalian: Dalian University of Technology, 2010. (in Chinese)

[5] YIN Z F, SUN L, CHENG E L, et al.. Two dimensional PMMA nanofluidic device fabricated by hot embossing and oxygen plasma assisted thermal bonding methods[J]. Nanotechnology, 2015, 26(21): 215302.

[6] WANG X D, JIN J, LI X, et al.. Low-pressure thermal bonding[J]. Microelectronic Engineering, 2011, 88(8): 2427-2430.

[7] LI J M, LIANG CH, ZHANG H, et al.. Reliable and high quality adhesive bonding for microfluidic devices[J]. Micro & Nano Letters, 2017, 12(2): 90-94.

[8] 徐征, 王继章, 杨铎, 等. 辅助溶剂对PMMA微流控芯片模内键合的影响[J]. 光学 精密工程, 2012, 20(2): 321-328.

    XU ZH, WANG J ZH, YANG D, et al.. Effect of assistant solvent on in-mold bonding of PMMA microfluidic chips[J]. Opt. Precision Eng., 2012, 20(2): 321-328. (in Chinese)

[9] 刘冲, 周立杰, 李经民, 等. 面向即时检测芯片超声波精密键合的熔接结构及工艺参数[J]. 光学 精密工程, 2016, 24(5), 1057-1064.

    LIU CH, ZHOU L J, LI J M, et al.. Joint structure and processing parameters of ultrasonic precision bonding for point-of-care testing chips[J]. Opt. Precision Eng., 2016, 24(5): 1057-1064. (in Chinese)

[10] TRUCKENMüLLER R, CHENG Y, AHRENS R, et al.. Micro ultrasonic welding: joining of chemically inert polymer microparts for single material fluidic components and systems[J]. Microsystem Technologies, 2006, 12(10-11): 1027-1029.

[11] LUO Y, HE SH Q, WANG L J, et al.. Study on ultrasonic fusion bonding for polymer microfluidic chips[J]. Key Engineering Materials, 2011, 483: 311-315.

[12] 蔡伟林, 熊涛, 尹周平. 基于螺旋理论的转动解耦调平机构型综合[J]. 中国机械工程, 2012, 23(18): 2213-2217.

    CAI W L, XIONG T, YIN ZH P. Type synthesis of a rotational decoupled leveling mechanism based on screw theory[J]. China Mechanical Engineering, 2012, 23(18): 2213-2217. (in Chinese)

[13] KIM D, JANG W I, CHOI B Y, et al.. Focusing and leveling system using position-sensitive detectors for the wafer steppers[J]. Proceedings of the SPIE, 1994, 2197: 997-1003.

[14] 余志伟, 于靖军, 宗光华, 等. 柔性调平机构概念设计[J]. 北京航空航天大学学报. 2005, 31(7): 714-717.

    YU ZH W, YU J J, ZONG G H, et al.. Conceptual design of compliant leveling mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(7): 714-717. (in Chinese)

[15] HUANG Y C, LEE C Y, CHEN C R. Theoretical and experimental design of a new flexible hinged positioning stage[J]. Journal of the Chinese Society of Mechanical Engineers, 2012, 33(1): 59-62.

[16] 王洪喜, 柴鹏, 王冠伟, 等. 基于柔性机构的精密调平调心平台设计与分析[J]. 机械设计, 2016, 33(7): 27-30.

    WANG H X, CHAI P, WANG G W, et al.. Design and analysis of precision centering and leveling table based on flexible mechanism[J]. Journal of Machine Design, 2016, 33(7): 27-30. (in Chinese)

[17] CHUAH Y K, CHIEN L H J, CHANG B C, et al.. Effects of the shape of the energy director on far-field ultrasonic welding of thermoplastics[J]. Polymer Engineering & Science, 2000, 40(1): 157-167.

刘冲, 孟凡健, 梁超, 李经民. 超声波键合熔接结构及压力自平衡夹具[J]. 光学 精密工程, 2018, 26(3): 672. LIU Chong, MENG Fan-jian, LIANG Chao, LI Jing-min. A joint structure and self-balancing jig based on ultrasonic bonding[J]. Optics and Precision Engineering, 2018, 26(3): 672.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!