强激光与粒子束, 2014, 26 (10): 103001, 网络出版: 2014-12-08  

圆波导硅探测结构对X波段电磁波模式的响应

Response of silicon detecting chip to X-band electromagnetic wave modes in circular waveguide
作者单位
1 西北核技术研究所, 西安 710024
2 高功率微波技术重点实验室, 西安 710024
摘要
采用数值模拟和理论分析方法,研究了圆波导内置n-Si探测结构对X波段几种常用电磁波模式的电场响应。首先基于强电场下的热载流子效应,设计了一种利用n-Si进行高功率脉冲实时测量的圆波导探测结构。接着采用三维并行电磁场时域有限差分方法,模拟研究并分析了TE11(两种极化方向)、TM01和TE01模式作用下圆波导探测结构内的横向电场分布特点。结果表明:不同模式下探测芯片内的横向电场均以径向电场为主,径向和角向电场幅度比约为10,而芯片在圆波导内引入的横向电场驻波比均不大于1.3。最后推导了圆波导探测结构在不同模式电场作用下的灵敏度表达式,理论分析指出了探测结构的最大承受功率与圆波导模式有关,最高可达422 MW,响应时间则均为ps量级,初步证实了该探测结构可用于X波段百MW级脉冲波源在线探测的可行性。
Abstract
Electric field response of silicon detecting chip within circular waveguide to several usual electromagnetic wave modes in X-band is studied numerically and theoretically. Based on the hot carrier effect under high electric field, a silicon detecting structure is proposed to measure the high power microwave (HPM) pulse within circular waveguide in real time. Then cross-sectional electric field distributions are simulated and analyzed when HPMs with TE11 mode (with two orthogonal polarization directions), TM01 mode and TE01 mode are applied respectively by using the three dimensional parallel finite-difference time-domain (FDTD) method. Results of different modes show that the transverse electric fields are all dominated by radial components, and the amplitude ratios between radial and angular components are probably 10. The standing wave ratio of transverse electric field is no more than 1.3. At last, the sensitivities of the detecting structure for different modes in circular waveguide are derived. Therotical analysis indicates that the maximum enduring power of the detecting structure, which can reach as high as 422 MW, is dependent upon modes, and its response time is in the picosecond-level. It attests the feasibility of on-line measurements of X-band HPM pulses employing the designed detecting structure.
参考文献

[1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd Ed. New York: Taylor and Francis, 2007: 321-370.

[2] Lee B M, Lee W S, Yoon Y J, et al. X-band TM01-TE11 mode converter with short length for high power[J]. Electronics Letters, 2004, 40(18): 1126-1127.

[3] 王冬, 金晓, 陈代兵, 等. L波段紧凑型TEM-TE11模式转换器[J]. 强激光与粒子束, 2012, 24(9): 2169-2173. (Wang Dong, Jin Xiao, Chen Daibing, et al. Compact L band TEM-TE11 mode converter. High Power Laser and Particle Beams, 2012, 24(9): 2169-2173).

[4] Tantawi S G. A novel circular TE01-mode bend for ultra-high-power applications[J]. J Electromag Waves Appl, 2004, 18(12): 1679-1687.

[5] Klimov A I, Kovalchuk O B, Rostov V V, et al. Measurement of parameters of X-band high-power microwave superradiative pulses[J]. IEEE Trans on Plasma Sci, 2008, 36(3): 661-664.

[6] Burkhart S. Coaxial E-field probe for high-power microwave measurement[J]. IEEE Trans on Microw Theory Technol,1985, 33(3): 262-265.

[7] 曹乃胜, 罗勇, 王建勋. 圆波导-矩形波导小孔耦合定向耦合器设计[J]. 强激光与粒子束, 2008, 20(4): 637-640. (Cao Naisheng, Luo Yong, Wang Jianxun. Design of aperture-coupling directional coupler. High Power Laser and Particle Beams, 2008, 20(4): 637-640)

[8] Dagys M, Kancleris , Orevskis V, et al. The resistive sensor: A device for high-power microwave pulsed measurements[J]. IEEE Trans on Antennas Propag M, 2001, 43(5): 64-78.

[9] Simnikis R, Dagys M, Kancleris , et al. Experimental investigation of resistive sensor for high-power millimetre wave pulse measurement[J]. Acta Physica Polonica A, 2008, 113(3): 1091-1094.

[10] 王光强, 王建国, 童长江, 等.高功率太赫兹脉冲半导体探测器的分析与设计[J].物理学报, 2011, 60: 030702.(Wang Guangqiang, Wang Jianguo, Tong Changjiang, et al. Analysis and design of semiconductor detector for high-power terahertz pulse. Acta Physica Sinica, 2011, 60: 030702)

[11] 王光强, 王建国, 童长江, 等. 过模结构0.14THz高功率脉冲探测器研制[J]. 强激光与粒子束, 2013, 25(11): 2959-2964. (Wang Guangqiang, Wang Jianguo, Tong Changjiang, et al. Development of 0.14 THz high-power pulse detector with overmoded structure. High Power Laser and Particle Beams, 2013, 25(11): 2959-2964)

[12] 丁耀根, 刘濮鲲, 张兆传, 等. 大功率微波真空电子器件的应用[J]. 强激光与粒子束, 2011, 23(8): 1989-1995. (Ding Yaogen, Liu Pukun, Zhang Zhaochuan, et al. Application of high power microwave vacuum electron devices. High Power Laser and Particle Beams, 2011, 23(8): 1989-1995)

[13] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2005. (Ge Debiao, Yan Yubo. The finite-difference time-domain method for electromagnetic waves. Xi’an: Xidian University Press, 2005.)

[14] 王玥, 王建国, 张殿辉. 卷积完全匹配层截断3维金属矩形波导的应用研究[J]. 强激光与粒子束, 2005, 17(10): 1557-1563. (Wang Yue, Wang Jianguo, Zhang Dianhui. Truncation of open boundary of 3D rectangular waveguide by CPML. High Power Laser and Particle Beams, 2005, 17(10): 1557-1563.)

[15] Wang G Q, Wang J G, Tong C J, et al. A repetitive 0.14 THz relativistic surface wave oscillator[J]. Phys Plasmas, 2013, 20: 043105.

[16] 徐勇, 罗勇, 熊彩东, 等. Ka波段TE01模基波回旋速调放大器的设计与实验[J]. 物理学报, 2011, 60(4): 048403. (Xu Yong, Luo Yong, Xiong Caidong, et al. Design and experiment of a Ka-band TE01 mode fundmental wave gyroklystron amplifier. Acta Physica Sinica, 2011, 60: 048403)

[17] Li Wei, Liu Yonggui, Shu Ting, et al. Experimental investigation of a compact relativistic magnetron with axial TE11 mode radiation[J]. Chin Phys B, 2012, 21: 055401.

[18] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 北京: 国防工业出版社, 2004: 84-110. (Liu Enke, Zhu Bingsheng, Luo Jinsheng. Semiconductor Physics. Beijing: National Defense Industry Press, 2004: 84-110)

[19] 陈洪斌, 周传明, 胡林林, 等. 0.14 THz 返波管器件[J]. 强激光与粒子束, 2010, 22(4): 865-869. (Chen Hongbin, Zhou Chuanming, Hu Linlin, et al. 0.14 THz Backward wave oscillator. High Power Laser and Particle Beams, 2010, 22(4): 865-869)

王光强, 王建国, 朱湘琴, 王雪锋, 李爽. 圆波导硅探测结构对X波段电磁波模式的响应[J]. 强激光与粒子束, 2014, 26(10): 103001. Wang Guangqiang, Wang Jianguo, Zhu Xiangqin, Wang Xuefeng, Li Shuang. Response of silicon detecting chip to X-band electromagnetic wave modes in circular waveguide[J]. High Power Laser and Particle Beams, 2014, 26(10): 103001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!