光子学报, 2018, 47 (3): 0304002, 网络出版: 2018-02-01   

In0.53Ga0.47As/InP雪崩光电二极管响应及电学特性

Response and Electrical Characteristics of In0.53Ga0.47As/InP Avalanche Photodiode
作者单位
1 贵州大学 大数据与信息工程学院, 贵阳 550025
2 中国科学院苏州纳米技术与纳米仿生研究所 纳米器件与应用重点实验室, 江苏 苏州 215123
摘要
通过分子束外延生长和开管式Zn扩散方法, 制备了低暗电流、宽响应范围的In0.53Ga0.47As/InP雪崩光电二极管.在0.95倍雪崩击穿电压下, 器件暗电流小于10 nA; -5 V偏压下电容密度低至1.43×10-8 F/cm2.在1 310 nm红外光照及30 V反向偏置电压下, 雪崩光电二极管器件的响应范围为50 nW~20 mW, 响应度达到1.13 A/W.得到了电荷层掺杂浓度、倍增区厚度结构参数与击穿电压和贯穿电压的关系: 随着电荷层电荷密度的增加, 器件贯穿电压线性增加, 而击穿电压线性降低; 电荷层电荷面密度为4.8×1012 cm-2时, 随着倍增层厚度的增加, 贯穿电压线性增加, 击穿电压增加.通过对器件结构优化, 雪崩光电二极管探测器实现25 V的贯穿电压和57 V的击穿电压, 且具有低暗电流和宽响应范围等特性.
Abstract
In0.53Ga0.47As/InP Avalanche Photodiode (APD) with low dark current, wide-range response is prepared by molecular beam epitaxy and open-tube zinc diffusion method. The dark current is less than 10 nA at 0.95Vb (Vb is the avalanche breakdown voltage), and the capacitance density is as low as 1.43×10-8 F/cm2 when the bias voltage is -5 V. The response range of APD is 50 nW~20 mW and the responsibility is up to 1.13 A/W under 1 310 nm infrared laser at 30 V reverse bias voltage. The breakdown voltage and punch-through voltage are investigated by changing concentration of the charge layer and thickness of the multiplication layer. The result shows that the punch-through voltage increases linearly, conversely, the breakdown voltage decreases linearly with increasing concentration of the charge layer. Further, the punch-through voltage increases linearly and breakdown voltage also increases with increasing thickness of the multiplication layer, while the surface density of charge layer is 4.8×1012 cm-2. Through optimizing SAGCM-APD device structure, the APD device achieves a 25 V punch-through voltage and a 57 V breakdown voltage, with low dark current, and wide-range response characteristics.
参考文献

[1] NADA M, NAKAMURA M, MATSUZAKI H. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching[J]. Optics Express, 2014, 22(1): 443-449.

[2] GNAUCK A H, VEEN D T V, IANNONE P, et al. Demonstration of 40-Gb/s TDM-PON over 42-km with 31 dB optical power budget using an APD-based receiver[J]. Journal of Lightwave Technology, 2015, 33(8): 1675-1680.

[3] BRANDL P, ENNE R, JUKIC T, et al. OWC using a fully integrated optical receiver with large-diameter APD[J]. IEEE Photonics Technology Letters, 2015, 27(5): 482-485.

[4] 王巍,陈婷,李俊峰,等. 高光电探测效率CMOS单光子雪崩二极管器件[J]. 光子学报,2017,46(8): 0823001.

    WANG Wei, CHEN Ting, LI Jun-feng, et al. The research of high photon detection efficiency CMOS single photon avalanche diode[J]. Acta Photonica Sinica, 2017, 46(8): 0823001.

[5] 王巍,鲍孝圆,陈丽,等. 高探测效率CMOS单光子雪崩二极管器件[J]. 光子学报,2017,45(8): 0823001.

    WANG Wei, BAO Xiao-yuan, CHEN Li, et al. A CMOS single photon avalanche diode device with high photon detection efficiency[J]. Acta Photonica Sinica, 2017, 45(8): 0823001.

[6] ZHAO Y L. Impact ionization in absorption, grading, charge, and multiplication layers of InP/InGaAs SAGCM APDs with a thick charge layer[J]. IEEE Transactions on Electron Devices, 2013, 60(10): 3493-3499.

[7] PITTS O J, HISKO M, BENYON W, et al. Optimization of MOCVD diffused p-InP for planar avalanche photodiodes[J]. Journal of Crystal Growth, 2014, 393(5): 85-88.

[8] MA Y J, ZHANG Y G, GU Y, et al. Low operating voltage and small gain slope of InGaAs APDs with p-type multiplication layer[J]. IEEE Photonics Technology Letters, 2015, 27(6): 661-664.

[9] ITZLER M A, PATEL K, JIANG X, et al. Geiger-mode APD camera system for single-photon 3D LADAR imaging[J]. Advanced Photon Counting Techniques VI, 2012, 8375: 83750D.

[10] CLARK W R, DAVIS A, ROLAND M, et al. 1 cm×1 cm In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array[J]. IEEE Photonics Technology Letters, 2011, 18(1): 19-21.

[11] ACERBI F, TOSI A, ZAPPA F. Dark count rate dependence on bias voltage during gate-off in InGaAs/InP single-photon avalanche diodes[J]. IEEE Photonics Technology Letters, 2013, 25(18): 1832-1834.

[12] AKIBA M, TSUJINO K, SASAKI M. Ultrahigh-sensitivity single-photon detection with linear-mode silicon avalanche photodiode[J]. Optics Letters, 2010, 35(15): 2621-2623.

[13] KLEINOW P, RUTZ F, AIDAM R, et al. Experimental investigation of the charge-layer doping level in InGaAs/InAlAs avalanche photodiodes[J]. Infrared Physics & Technology, 2015, 71: 298-302.

[14] GURP G J V, DONGEN T V, FONTIJN G M, et al. Interstitial and substitutional Zn in InP and InGaAsP[J]. Journal of Applied Physics, 1989, 65(2): 553-560.

[15] MARUYAMA T, NARUSAWA F, KUDO M, et al. Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode[J]. Lasers & Electro-optics, 2000, 41(2): 138-139.

[16] SMETONA S, MATUKAS J, PALENSKIS V, et al. Low-frequency noise, reliability, and quality of high-speed avalanche breakdown detectors[C]. SPIE, 2004, 5577: 834-842.

[17] HAYAT M M, SARGEANT W L, SALEH B E A. Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes[J]. IEEE Journal of Quantum Electronics, 1992, 28(5): 1360-1365.

[18] 曾巧玉. InGaAs/InP单光子雪崩光电二极管的制备及研究[D]. 上海: 中科院上海技术物理研究所, 2014: 37-38.

    ZENG Qiao-yu. Fabrication and study of InGaAs/InP single photo avalanche photodiodes (APDs)[D]. Shanghai: Shanghai institute of technical physics, Chinese Academy of Sciences, 2014: 37-38.

[19] PARK K, KANG S, et al. Effect of multiplication layer width on breakdown voltage in InP/InGaAs avalanche photodiode[J]. Applied Physics Letters, 1995, 67(25): 3789-3791.

[20] MCINTYRE R J. A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response[J]. IEEE Transactions on Electron Devices, 1999, 46(8): 1623-1631.

袁正兵, 肖清泉, 杨文献, 肖梦, 吴渊渊, 谭明, 代盼, 李雪飞, 谢泉, 陆书龙. In0.53Ga0.47As/InP雪崩光电二极管响应及电学特性[J]. 光子学报, 2018, 47(3): 0304002. YUAN Zheng-bing, XIAO Qing-quan, YANG Wen-xian, XIAO Meng, WU Yuan-yuan, TAN Ming, DAI Pan, LI Xue-fei, XIE Quan, LU Shu-long. Response and Electrical Characteristics of In0.53Ga0.47As/InP Avalanche Photodiode[J]. ACTA PHOTONICA SINICA, 2018, 47(3): 0304002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!