强激光与粒子束, 2015, 27 (9): 094001, 网络出版: 2015-11-30   

CMOS有源像素传感器的中子辐照位移损伤效应

Neutron irradiation induced displacement damage effects on CMOS active pixel image sensor
汪波 1,2,3,4,*李豫东 1,2,3郭旗 1,2,3文林 1,2,3,4孙静 1,2,3,4王帆 1,2,3,4张兴尧 1,2,3玛丽娅 1,2,3,4
作者单位
1 中国科学院 特殊环境功能材料与器件重点实验室, 乌鲁木齐 830011
2 新疆电子信息材料与器件重点实验室,乌鲁木齐 830011
3 中国科学院 新疆理化技术研究所,乌鲁木齐 830011
4 中国科学院大学, 北京 100049
摘要
为研究空间高能粒子位移损伤效应引起的星用CMOS图像传感器性能退化,对国产CMOS有源像素传感器进行了中子辐照试验,当辐射注量达到预定注量点时,采用离线的测试方法,定量测试了器件的暗信号、暗信号非均匀性、饱和输出电压、像素单元输出电压等参数的变化规律。通过对CMOS图像传感器敏感参数退化规律及其与器件工艺、结构的相关性进行分析,并根据半导体器件辐射效应理论,深入研究了器件参数退化机理。试验结果表明,暗信号和暗信号非均匀性随着中子辐照注量的增大而显著增大,饱和输出电压基本保持不变。暗信号的退化是因为位移效应在体硅内引入大量体缺陷增加了耗尽区内热载流子产生率,暗信号非均匀性的退化主要来自于器件受中子辐照后在像素与像素之间产生了大量非均匀性的体缺陷能级。另外,还在样品芯片上引出了独立的像素单元测试管脚,测试了不同积分时间下像素单元输出信号。
Abstract
Displacement damage effects due to neutron irradiations of CMOS active pixel sensors manufactured by a 0.5 μm CMOS N-Well technology are presented through the analysis of the dark signals behavior in pixel arrays. When the fluence of neutron reached the predetermined point, the changes of dark signal, dark signal non-uniformity, saturated output signal and pixel unit output signal were measured off line. Experiment shows that the mean dark signals and the dark signals, non-uniformity increased dramatically with the increasing neutron fluence. Saturation output signal voltage did not degrade obviously even at the highest fluence. It is concluded that a great deal of inhomogeneous defect energy levels occur between pixels irradiated by neutrons, which enhances the dark signals. In addition, individual pixel unit test pins are introduced from the sample chip, and the output signal of the pixel unit is tested under different integration time.
参考文献

[1] 岳涛, 张宏伟, 黄长宁, 等. “嫦娥二号”卫星CMOS相机技术及应用[J]. 航天返回与遥感, 2011, 32(2): 12-17.

    Yue Tao, Zhang Hongwei, Huang Changning, et al. The application of Chang’E-2 CMOS camera technologies. Space Craft Recovery & Remote Sensing, 2011, 32(2): 12-17

[2] 张晋新, 郭红霞, 文林, 等. 锗硅异质结晶体管单粒子效应激光微束模拟[J]. 强激光与粒子束, 2013, 25(9): 2433-2438. (Zhang Jinxin, Guo Hongxia, Wen Lin, et al. Influencing factors of SiGe heterojunction bipolar transistor single event effect in laser microbeam simulation test. High Power Laser and Particle Beams, 2013, 25(9): 2433-2438)

[3] 周东, 郭旗, 任迪远, 等. 大规模集成电路抗辐射性能无损筛选方法[J]. 强激光与粒子束, 2013, 25(2): 485-489.( Zhou Dong, Guo Qi, Ren Diyuan, et al. Non-destructive screening method for radiation hardened performance of large scale integration. High Power Laser and Particle Beams, 2013, 25(2): 485-489)

[4] Goiffon V, Estribeau M, Magnan P. Overview of ionizing radiation effects in image sensors fabricated in a deep-submicrometer CMOS imaging technology[J]. IEEE Trans on Electron Devices, 2009, 56(11): 2594-2601.

[5] Virmontois C, Goiffon V, Magnan P, et al. Influence of displacement damage dose on dark current distributions of irradiated CMOS image sensors[C]//Radiation and Its Effects on Components and Systems. 2011: 329-335.

[6] Hopkinson G R, Mohammadzadeh A, Harboe-Sorensen R. Radiation effects on a radiation-tolerant CMOS active pixel sensor[J]. IEEE Trans on Nuclear Science, 2004, 51(5): 2753-2762.

[7] 汪波, 李豫东, 郭旗, 等. 质子辐射下互补金属氧化物半导体有源像素传感器暗信号退化机理研究[J].物理学报, 2015, 64: 084209.

    Wang Bo, Li Yudong, Guo Qi, et al. Research on dark signal degradation in proton-irradiated CMOS active pixel sensor. Acta Physica Sinica, 2015, 64: 084209

[8] 孟祥提, 康爱国,黄强. 中子辐照对彩色CMOS图像传感器性能的影响[J].半导体学报, 2007, 28(s): 583-587.

    Meng Xiangti, Kang Aiguo, Huang Qiang. Influence of neutron radiation on performance of color CMOS image sensors. Chinese Journal of Semiconductors, 2007, 28(s): 583-587

[9] Wood S, Doyle N J, Spitznagel J A, et al. Simulation of radiation damage in solids[J]. IEEE Trans on Nuclear Science, 1981, 28(6): 4107-4112.

[10] Sze S M, Ng K K. Physics of semiconductor devices[M]. New Jersey: John Wiley & Sons, 2006.

[11] Hopkins I H, Hopkinson G R, Johlander B. Proton-induced charge transfer degradation in CCDs for near-room temperature applications[J]. IEEE Trans on Nuclear Science, 1994, 41(6): 1984-1991.

[12] Duan B, Hei D, Song G, et al. Study on transient noise of CCD camera induced by γ-ray[C]//International Symposium on Photoelectronic Detection and Imaging. 2011: 81943D.

[13] Goiffon V, Cervantes P, Virmontois C, et al. Generic radiation hardened photodiode layouts for deep submicron CMOS image sensor processes[J]. IEEE Trans on Nuclear Science, 2011, 58(6): 3076-3084.

[14] 陈盘训.半导体器件和集成电路的辐射效应[M]. 北京:国防工业出版社,2005.

    Chen Panxun. Radiation effects on semiconductor devices and integrated circuits. Beijing:National Defense Industry Press,2005

[15] Seabroke G, Holland A, Cropper M. Modelling radiation damage to ESA's Gaia satellite CCDs[C]//Proc of SPIE. 2008: 70211P.

[16] Bogaerts J, Dierickx B, Meynants G, et al. Total dose and displacement damage effects in a radiation-hardened CMOS APS[J]. IEEE Trans on Electron Devices, 2003, 50(1): 84-90.

汪波, 李豫东, 郭旗, 文林, 孙静, 王帆, 张兴尧, 玛丽娅. CMOS有源像素传感器的中子辐照位移损伤效应[J]. 强激光与粒子束, 2015, 27(9): 094001. Wang Bo, Li Yudong, Guo Qi, Wen Lin, Sun Jing, Wang Fan, ZhangXingyao, Ma Liya. Neutron irradiation induced displacement damage effects on CMOS active pixel image sensor[J]. High Power Laser and Particle Beams, 2015, 27(9): 094001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!