光学学报, 2018, 38 (3): 0328007, 网络出版: 2018-03-20   

光学相干域偏振测量技术及其在高精度光纤陀螺器件测量中的应用 下载: 1782次特邀综述

Optical Coherence Domain Polarimetry Technology and Its Application in Measurement for Evaluating Components of High Precision Fiber-Optic Gyroscopes
杨军 1,2,*苑勇贵 1,3喻张俊 1,2李寒阳 1,2侯长波 1,3张浩亮 1,2苑立波 1,2,4
作者单位
1 哈尔滨工程大学纤维集成光学教育部重点实验室, 黑龙江 哈尔滨 150001
2 哈尔滨工程大学理学院, 黑龙江 哈尔滨 150001
3 哈尔滨工程大学信息与通信工程学院, 黑龙江 哈尔滨 150001
4 桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
引用该论文

杨军, 苑勇贵, 喻张俊, 李寒阳, 侯长波, 张浩亮, 苑立波. 光学相干域偏振测量技术及其在高精度光纤陀螺器件测量中的应用[J]. 光学学报, 2018, 38(3): 0328007.

Yang Jun, Yuan Yonggui, Yu Zhangjun, Li Hanyang, Hou Changbo, Zhang Haoliang, Yuan Libo. Optical Coherence Domain Polarimetry Technology and Its Application in Measurement for Evaluating Components of High Precision Fiber-Optic Gyroscopes[J]. Acta Optica Sinica, 2018, 38(3): 0328007.

参考文献

[1] Bergh R A, Lefevre H C, Shaw H J. An overview of fiber-optic gyroscopes[J]. Journal of Lightwave Technology, 1984, 2(2): 91-107.

    Bergh R A, Lefevre H C, Shaw H J. An overview of fiber-optic gyroscopes[J]. Journal of Lightwave Technology, 1984, 2(2): 91-107.

[2] Sanders GA, SzafraniecB, Liu RY, et al. Fiber optic gyros for space, marine, and aviation applications[C]. SPIE, 1996, 2837: 61- 71.

    Sanders GA, SzafraniecB, Liu RY, et al. Fiber optic gyros for space, marine, and aviation applications[C]. SPIE, 1996, 2837: 61- 71.

[3] DivakaruniS, SandersS. Fiber optic gyros: A compelling choice for high precision applications[C]∥Proceedings of the Optical Fiber Sensors, 2006: MC2.

    DivakaruniS, SandersS. Fiber optic gyros: A compelling choice for high precision applications[C]∥Proceedings of the Optical Fiber Sensors, 2006: MC2.

[4] MartinP, le BoudecG, Lefevre HC. Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry[C]. SPIE, 1992, 1585: 173- 179.

    MartinP, le BoudecG, Lefevre HC. Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry[C]. SPIE, 1992, 1585: 173- 179.

[5] Sanders SJ, Strandjord LK, MeadD. Fiber optic gyro technology trends-a Honeywell perspective[C]∥Proceedings of the Optical Fiber Sensors Conference Technical Digest, 2002: 5- 8.

    Sanders SJ, Strandjord LK, MeadD. Fiber optic gyro technology trends-a Honeywell perspective[C]∥Proceedings of the Optical Fiber Sensors Conference Technical Digest, 2002: 5- 8.

[6] Lefèvre HC. The fiber-optic gyroscope: Actually better than the ring-laser gyroscope?[C]. SPIE, 2012, 8421: 842104.

    Lefèvre HC. The fiber-optic gyroscope: Actually better than the ring-laser gyroscope?[C]. SPIE, 2012, 8421: 842104.

[7] Lefèvre HC. Potpourri of comments about the fiber optic gyro for its 40th anniversary, and how fascinating it was and it still is![C]. SPIE, 2016, 9852: 985203.

    Lefèvre HC. Potpourri of comments about the fiber optic gyro for its 40th anniversary, and how fascinating it was and it still is![C]. SPIE, 2016, 9852: 985203.

[8] Findakly T, Bramson M. High-performance integrated-optical chip for a broad range of fiber-optic gyro applications[J]. Optics Letters, 1990, 15(12): 673-675.

    Findakly T, Bramson M. High-performance integrated-optical chip for a broad range of fiber-optic gyro applications[J]. Optics Letters, 1990, 15(12): 673-675.

[9] Nayak J. Fiber-optic gyroscopes: From design to production[J]. Applied Optics, 2011, 50(25): E152-E161.

    Nayak J. Fiber-optic gyroscopes: From design to production[J]. Applied Optics, 2011, 50(25): E152-E161.

[10] Lefèvre HC. The fiber-optic gyroscope[M]. Norwood: Artech House, 2014.

    Lefèvre HC. The fiber-optic gyroscope[M]. Norwood: Artech House, 2014.

[11] Youngquist R C, Carr S. Davies D E N. Optical coherence-domain reflectometry: A new optical evaluation technique[J]. Optics Letters, 1987, 12(3): 158-160.

    Youngquist R C, Carr S. Davies D E N. Optical coherence-domain reflectometry: A new optical evaluation technique[J]. Optics Letters, 1987, 12(3): 158-160.

[12] Brinkmeyer E, Ulrich R. High-resolution OCDR in dispersive waveguides[J]. Electronics Letters, 1990, 26(6): 413-414.

    Brinkmeyer E, Ulrich R. High-resolution OCDR in dispersive waveguides[J]. Electronics Letters, 1990, 26(6): 413-414.

[13] Swanson E A, Huang D, Hee M R, et al. High-speed optical coherence domain reflectometry[J]. Optics Letters, 1992, 17(2): 151-153.

    Swanson E A, Huang D, Hee M R, et al. High-speed optical coherence domain reflectometry[J]. Optics Letters, 1992, 17(2): 151-153.

[14] Hamel P, Jaouën Y, Gabet R, et al. Optical low-coherence reflectometry for complete chromatic dispersion characterization of few-mode fibers[J]. Optics Letters, 2007, 32(9): 1029-1031.

    Hamel P, Jaouën Y, Gabet R, et al. Optical low-coherence reflectometry for complete chromatic dispersion characterization of few-mode fibers[J]. Optics Letters, 2007, 32(9): 1029-1031.

[15] Bourquin S, Monterosso V, Seitz P, et al. Video-rate optical low-coherence reflectometry based on a linear smart detector array[J]. Optics Letters, 2000, 25(2): 102-104.

    Bourquin S, Monterosso V, Seitz P, et al. Video-rate optical low-coherence reflectometry based on a linear smart detector array[J]. Optics Letters, 2000, 25(2): 102-104.

[16] Sorin W V, Gray D F. Simultaneous thickness and group index measurement using optical low-coherence reflectometry[J]. IEEE Photonics Technology Letters, 1992, 4(1): 105-107.

    Sorin W V, Gray D F. Simultaneous thickness and group index measurement using optical low-coherence reflectometry[J]. IEEE Photonics Technology Letters, 1992, 4(1): 105-107.

[17] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

    Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

[18] Liu X M, Cobb M J, Li X D. Rapid scanning all-reflective optical delay line for real-time optical coherence tomography[J]. Optics Letters, 2004, 29(1): 80-82.

    Liu X M, Cobb M J, Li X D. Rapid scanning all-reflective optical delay line for real-time optical coherence tomography[J]. Optics Letters, 2004, 29(1): 80-82.

[19] TardyA, JurczyszynM, BruyereF, et al. Fiber PMD analysis for optical-fiber cable using polarization OTDR[C]. Proceedings of the Optical Fiber Communication Conference, 1995: ThD2.

    TardyA, JurczyszynM, BruyereF, et al. Fiber PMD analysis for optical-fiber cable using polarization OTDR[C]. Proceedings of the Optical Fiber Communication Conference, 1995: ThD2.

[20] Gisin B. Distributed PMD measurement with a polarization-OTDR in optical fibers[J]. Journal of Lightwave Technology, 1999, 17(10): 1843-1848.

    Gisin B. Distributed PMD measurement with a polarization-OTDR in optical fibers[J]. Journal of Lightwave Technology, 1999, 17(10): 1843-1848.

[21] Passy R. Gisin N, von der Weid J P, et al. Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources[J]. Journal of Lightwave Technology, 1994, 12(9): 1622-1630.

    Passy R. Gisin N, von der Weid J P, et al. Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources[J]. Journal of Lightwave Technology, 1994, 12(9): 1622-1630.

[22] Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides[J]. Journal of Lightwave Technology, 1993, 11(8): 1377-1384.

    Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides[J]. Journal of Lightwave Technology, 1993, 11(8): 1377-1384.

[23] ChenS, Giles IP. Optical coherence domain polarimetry: Intensity and interferometric type for quasi-distributed optical fibre sensors[C]. SPIE, 1990, 1370: 217- 225.

    ChenS, Giles IP. Optical coherence domain polarimetry: Intensity and interferometric type for quasi-distributed optical fibre sensors[C]. SPIE, 1990, 1370: 217- 225.

[24] Chen S, Giles I P, Fahadiroushan M. Quasi-distributed pressure sensor using intensity-type optical coherence domain polarimetry[J]. Optics Letters, 1991, 16(5): 342-344.

    Chen S, Giles I P, Fahadiroushan M. Quasi-distributed pressure sensor using intensity-type optical coherence domain polarimetry[J]. Optics Letters, 1991, 16(5): 342-344.

[25] Chen S, Giles I P. ‘On-spot’ interferometric optical coherence domain polarimetry for quasi-distribute temperature sensors[J]. Electronics Letters, 1990, 26(19): 1607-1608.

    Chen S, Giles I P. ‘On-spot’ interferometric optical coherence domain polarimetry for quasi-distribute temperature sensors[J]. Electronics Letters, 1990, 26(19): 1607-1608.

[26] Li Z H, Meng Z, Chen X J, et al. Method for improving the resolution and accuracy against birefringence dispersion in distributed polarization cross-talk measurements[J]. Optics Letters, 2012, 37(14): 2775-2777.

    Li Z H, Meng Z, Chen X J, et al. Method for improving the resolution and accuracy against birefringence dispersion in distributed polarization cross-talk measurements[J]. Optics Letters, 2012, 37(14): 2775-2777.

[27] Jun Y, Yuan Y G, Ai Z, et al. Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy[J]. Journal of Lightwave Technology, 2014, 32(22): 3641-3650.

    Jun Y, Yuan Y G, Ai Z, et al. Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy[J]. Journal of Lightwave Technology, 2014, 32(22): 3641-3650.

[28] BingW, YangJ, Yuan YG, et al. Performance tests of PM optical fiber coupler based on optical coherence domain polarimetry[C]. SPIE, 2012, 8421: 8421A2.

    BingW, YangJ, Yuan YG, et al. Performance tests of PM optical fiber coupler based on optical coherence domain polarimetry[C]. SPIE, 2012, 8421: 8421A2.

[29] Tang F, Wang X Z, Zhang Y M, et al. Characterization of birefringence dispersion in polarization-maintaining fibers by use of white-light interferometry[J]. Applied Optics, 2007, 46(19): 4073-4080.

    Tang F, Wang X Z, Zhang Y M, et al. Characterization of birefringence dispersion in polarization-maintaining fibers by use of white-light interferometry[J]. Applied Optics, 2007, 46(19): 4073-4080.

[30] Yuan Y G, Cheng Y Q, Yang J, et al. Suppression of interference noise caused by Fresnel reflection in all-fiber white-light interferometer[J]. Applied Optics, 2017, 56(31): 8732-8737.

    Yuan Y G, Cheng Y Q, Yang J, et al. Suppression of interference noise caused by Fresnel reflection in all-fiber white-light interferometer[J]. Applied Optics, 2017, 56(31): 8732-8737.

[31] Li C, Yuan Y G, Yang J, et al. Inconsistency measurement between two branches of LiNbO3 integrated optic Y-junction[J]. Optics Communications, 2016, 369: 152-158.

    Li C, Yuan Y G, Yang J, et al. Inconsistency measurement between two branches of LiNbO3 integrated optic Y-junction[J]. Optics Communications, 2016, 369: 152-158.

[32] Sorin W V, Baney D M. A simple intensity noise reduction technique for optical low-coherence reflectometry[J]. IEEE Photonics Technology Letters, 1992, 4(12): 1404-1406.

    Sorin W V, Baney D M. A simple intensity noise reduction technique for optical low-coherence reflectometry[J]. IEEE Photonics Technology Letters, 1992, 4(12): 1404-1406.

[33] Haskell R C, Liao D, Pivonka A E, et al. Role of beat noise in limiting the sensitivity of optical coherence tomography[J]. Journal of the Optical Society of America A, 2006, 23(11): 2747-2755.

    Haskell R C, Liao D, Pivonka A E, et al. Role of beat noise in limiting the sensitivity of optical coherence tomography[J]. Journal of the Optical Society of America A, 2006, 23(11): 2747-2755.

[34] Rollins A M, Izatt J A. Optimal interferometer designs for optical coherence tomography[J]. Optics Letters, 1999, 24(21): 1484-1486.

    Rollins A M, Izatt J A. Optimal interferometer designs for optical coherence tomography[J]. Optics Letters, 1999, 24(21): 1484-1486.

[35] Li C, Yang J, Yu Z J, et al. Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer[J]. Optics Express, 2016, 24(15): 16247-16257.

    Li C, Yang J, Yu Z J, et al. Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer[J]. Optics Express, 2016, 24(15): 16247-16257.

[36] Tang F, Wang X Z, Zhang Y M, et al. Distributed measurement of birefringence dispersion in polarization-maintaining fibers[J]. Optics Letters, 2006, 31(23): 3411-3413.

    Tang F, Wang X Z, Zhang Y M, et al. Distributed measurement of birefringence dispersion in polarization-maintaining fibers[J]. Optics Letters, 2006, 31(23): 3411-3413.

[37] Li C, Yang J, Yuan Y G, et al. A differential delay line for optical coherence domain polarimetry[J]. Measurement Science and Technology, 2015, 26(4): 045102.

    Li C, Yang J, Yuan Y G, et al. A differential delay line for optical coherence domain polarimetry[J]. Measurement Science and Technology, 2015, 26(4): 045102.

[38] Yuan Y G, Lu D C, Yang J, et al. Range extension of the optical delay line in white light interferometry[J]. Applied Optics, 2017, 56(16): 4598-4605.

    Yuan Y G, Lu D C, Yang J, et al. Range extension of the optical delay line in white light interferometry[J]. Applied Optics, 2017, 56(16): 4598-4605.

[39] Kasap SO. Optoelectronics and photonics: Principles and practices[M]. Upper Saddle River: Pearson Education India, 2009.

    Kasap SO. Optoelectronics and photonics: Principles and practices[M]. Upper Saddle River: Pearson Education India, 2009.

[40] Flavin D A. McBride R, Jones J D C. Dispersion of birefringence and differential group delay in polarization-maintaining fiber[J]. Optics Letters, 2002, 27(12): 1010-1012.

    Flavin D A. McBride R, Jones J D C. Dispersion of birefringence and differential group delay in polarization-maintaining fiber[J]. Optics Letters, 2002, 27(12): 1010-1012.

[41] Yu Z J, Yang J, Yuan Y G, et al. High-resolution distributed dispersion characterization for polarization maintaining fibers based on a closed-loop measurement framework[J]. IEEE Photonics Journal, 2017, 9(3): 7103508.

    Yu Z J, Yang J, Yuan Y G, et al. High-resolution distributed dispersion characterization for polarization maintaining fibers based on a closed-loop measurement framework[J]. IEEE Photonics Journal, 2017, 9(3): 7103508.

[42] Tang F, Wang X Z, Zhang Y M, et al. Influence of birefringence dispersion on distributed measurement of polarization coupling in birefringent fibers[J]. Optical Engineering, 2007, 46(7): 075006.

    Tang F, Wang X Z, Zhang Y M, et al. Influence of birefringence dispersion on distributed measurement of polarization coupling in birefringent fibers[J]. Optical Engineering, 2007, 46(7): 075006.

[43] Yu Z J, Yang J, Yuan Y G, et al. Quasi-distributed birefringence dispersion measurement for polarization maintain device with high accuracy based on white light interferometry[J]. Optics Express, 2016, 24(2): 1587-1597.

    Yu Z J, Yang J, Yuan Y G, et al. Quasi-distributed birefringence dispersion measurement for polarization maintain device with high accuracy based on white light interferometry[J]. Optics Express, 2016, 24(2): 1587-1597.

[44] Zhang H L, Yang J, Li C, et al. Measurement error analysis for polarization extinction ratio of multi-functional integrated optic chips[J]. Applied Optics, 2017, 56(24): 6873-6880.

    Zhang H L, Yang J, Li C, et al. Measurement error analysis for polarization extinction ratio of multi-functional integrated optic chips[J]. Applied Optics, 2017, 56(24): 6873-6880.

[45] Jin J, Wang S, Song J M, et al. Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP[J]. Optical Fiber Technology, 2013, 19(5): 495-500.

    Jin J, Wang S, Song J M, et al. Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP[J]. Optical Fiber Technology, 2013, 19(5): 495-500.

[46] Zhang H X, Chen X W, Ye W T, et al. Mitigation of the birefringence dispersion on the polarization coupling measurement in a long-distance high-birefringence fiber[J]. Measurement Science and Technology, 2012, 23(2): 025203.

    Zhang H X, Chen X W, Ye W T, et al. Mitigation of the birefringence dispersion on the polarization coupling measurement in a long-distance high-birefringence fiber[J]. Measurement Science and Technology, 2012, 23(2): 025203.

[47] Corp GP. PXA-1000 - distributed polarization crosstalk analyzer[EB/OL]. [2017-10-28].http:∥www.general-photonics.com.

    Corp GP. PXA-1000 - distributed polarization crosstalk analyzer[EB/OL]. [2017-10-28].http:∥www.general-photonics.com.

[48] Yuan Y G, Li C, Yang J, et al. Simultaneous evaluation of two branches of a multifunctional integrated optic chip with an ultra-simple dual-channel configuration[J]. Photonics Research, 2015, 3(4): 115-118.

    Yuan Y G, Li C, Yang J, et al. Simultaneous evaluation of two branches of a multifunctional integrated optic chip with an ultra-simple dual-channel configuration[J]. Photonics Research, 2015, 3(4): 115-118.

[49] Bortz M L, Fejer M M. Annealed proton-exchanged LiNbO3 waveguides[J]. Optics Letters, 1991, 16(23): 1844-1846.

    Bortz M L, Fejer M M. Annealed proton-exchanged LiNbO3 waveguides[J]. Optics Letters, 1991, 16(23): 1844-1846.

[50] Korkishko Y N, Fedorov V A, Feoktistova O Y. LiNbO3 optical waveguide fabrication by high-temperature proton exchange[J]. Journal of Lightwave Technology, 2000, 18(4): 562-568.

    Korkishko Y N, Fedorov V A, Feoktistova O Y. LiNbO3 optical waveguide fabrication by high-temperature proton exchange[J]. Journal of Lightwave Technology, 2000, 18(4): 562-568.

[51] HuaY, ShuP, Zheng DS, et al. Method for improving the polarization extinction ratio of Y waveguide used in fiber optic gyroscope: CN 103267998 B[P/OL]. ( 2015-06-17)[2013-08-28]. http:∥www.patexplorer.com/patent/view.html?patid=CN201310185490.2&sc=&q=%E5%8D%8E%E5%8B%87%20%E8%88%92%E5%B9%B3&fq=&sort=&sortField=&page=1&rows=10#1/CN201310185490.2/detail/abst.

    HuaY, ShuP, Zheng DS, et al. Method for improving the polarization extinction ratio of Y waveguide used in fiber optic gyroscope: CN 103267998 B[P/OL]. ( 2015-06-17)[2013-08-28]. http:∥www.patexplorer.com/patent/view.html?patid=CN201310185490.2&sc=&q=%E5%8D%8E%E5%8B%87%20%E8%88%92%E5%B9%B3&fq=&sort=&sortField=&page=1&rows=10#1/CN201310185490.2/detail/abst.

杨军, 苑勇贵, 喻张俊, 李寒阳, 侯长波, 张浩亮, 苑立波. 光学相干域偏振测量技术及其在高精度光纤陀螺器件测量中的应用[J]. 光学学报, 2018, 38(3): 0328007. Yang Jun, Yuan Yonggui, Yu Zhangjun, Li Hanyang, Hou Changbo, Zhang Haoliang, Yuan Libo. Optical Coherence Domain Polarimetry Technology and Its Application in Measurement for Evaluating Components of High Precision Fiber-Optic Gyroscopes[J]. Acta Optica Sinica, 2018, 38(3): 0328007.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!