光子学报, 2018, 47 (7): 0716001, 网络出版: 2018-09-16  

LuPO4晶体中F心和F+心的光谱性质模拟计算

Optical Properties Simulating Calculation of the F or F+ Center in LuPO4 Crystal
作者单位
1 上海理工大学 理学院, 上海200093
2 上海市现代光学重点实验室, 上海200093
摘要
基于密度泛函理论下的广义梯度近似结合平面波赝势方法计算得到LuPO4晶体的缺陷形成能, 对带电缺陷与其镜像之间周期性库伦作用进行修正, 得到比较精确的不同带电态的氧空位缺陷形成能, 并利用杂化泛函方法修正带隙和带边.考虑电子声子耦合作用结合缺陷形成能构建光谱.对比LuPO4∶Nd的实验结果与计算结果, 发现F心的吸收峰与Nd3+的5d—4f发射峰重叠(位于189 nm), 表明LuPO4∶Nd中光产额较低的原因与F心的存在有密切关系.
Abstract
The defect formation energy of LuPO4 crystal is calculated by generalized gradient approximation combined with plane wave pseudo-potential based on density functional theory. The periodic arrangement of the defect introduces artifical interactions is corrected. The oxygen vacancy defect formation energy in different charged states is obtained accurately, and band gap is modified through Hybrid functional. The optical line shapes are described by the defect formation energy and electron-phonon coupling. The comparison of LuPO4∶Nd experimental and calculated results shows the absorption peak of F center are superimposed on Nd3+ 5d—4f emission (located at 189 nm). It is inferred that F center is found to be responsible for the limited light yield in LuPO4∶Nd.
参考文献

[1] LAI H, BAO A, YANG Y,et al. UV luminescence property of YPO4∶RE (RE=Ce3+,Tb3+)[J]. The Journal of Physical Chemistry C, 2008, 112(1): 282-286.

[2] KAWAGUCHI N, YANAGIDA T, FUJIMOTO Y,et al. VUV Luminescence with Nd doped KCaF3 under X-Ray excitation[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2183-2187.

[3] WISNIEWSKI D, TAVERNIER S, WOJTOWICZ A J, et al. LuPO4: Nd and YPO4: Nd—new promising VUV scintillation materials[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486(1): 239-243.

[4] WISNIEWSKI D, TAVERNIER S, DORENBOS P, et al. VUV scintillation of LuPO/sub4: Nd and YPO/sub4: Nd[J]. IEEE Transactions on Nuclear Science, 2002, 49(3): 937-940.

[5] ZORENKO Y, GORBENKO V, KONSTANKEVYCH I,et al. Peculiarities of luminescence and scintillation properties of YAP: Ce and LuAP: Ce single crystals and single crystalline films[J]. Radiation Measurements, 2007, 42(4): 528-532.

[6] NING L, CHENG W, ZHOU C,et al. Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid DFT study[J]. The Journal of Physical Chemistry C, 2014, 118(34): 19940-19947.

[7] VEDDA A, MARTINI M, MEINARDI F,et al. Tunneling process in thermally stimulated luminescence of mixed LuxY1-xAlO3: Ce crystals[J]. Physical Review B, 2000, 61(12): 8081.

[8] NIKL M, LAGUTA VV, VEDDA A. Energy transfer and charge carrier capture processes in wide-band-gap scintillators[J]. Physica Status Solidi (a), 2007, 204(3): 683-689.

[9] ZORENKO Y V, VOLOSHINOVSKII A S, STRYGANYUK G M, et al. Ultraviolet luminescence of single crystals and single-crystal films of YAlO3[J]. Optics and Spectroscopy, 2004, 96(1): 70-76.

[10] BLAZEK K, KRASNIKOV A, NEJEZCHLEB K,et al. Luminescence and defects creation in Ce3+-doped YAlO3 and Lu0.3Y0.7AlO3crystals[J]. Physica Status Solidi (b), 2005, 242(6): 1315-1323.

[11] KRASNIKOV A, SAVIKHINA T, ZAZUBOVICH S,et al. Luminescence and defects creation in Ce3+-doped aluminium and lutetium perovskites and garnets[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1): 130-133.

[12] ZORENKO Y V, VOLOSHINOVSKII A S, KONSTANKEVYCH I V. Luminescence of F+ and F centers in YAlO3[J]. Optics and Spectroscopy, 2004, 96(4): 532-537.

[13] LANY S, ZUNGER A.Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs[J]. Physical Review B, 2008, 78(23): 235104.

[14] COLLEONI D, PASQUARELLO A.The OAs defect in GaAs: a hybrid density functional study[J]. Applied Surface Science, 2014, 291: 6-10.

[15] FREYSOLDT C, NEUGEBAUER J, VAN DE WALLE C G. Fully ab initio finite-size corrections for charged-defect supercell calculations[J]. Physical Review Letters, 2009, 102(1): 016402.

[16] KRUMPEL A H, BOS A J J, BESSIèRE A, et al. Controlled electron and hole trapping in YPO4∶Ce3+, Ln3+ and LuPO4∶Ce3+, Ln3+(Ln= Sm, Dy, Ho, Er, Tm)[J]. Physical Review B, 2009, 80(8): 085103.

[17] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865.

[18] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169.

[19] KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.

[20] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened coulomb potential[J]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215.

[21] MIKHAILIN VV, SPASSKY D A, KOLOBANOV V N, et al. Luminescence study of the LuBO3 and LuPO4 doped with RE3+[J]. Radiation Measurements, 2010, 45(3): 307-310.

[22] ALKAUSKAS A, BROQVIST P, PASQUARELLO A. Defect energy levels in density functional calculations: Alignment and band gap problem[J]. Physical Review Letters, 2008, 101(4): 046405.

[23] VAN DE WALLE C G, NEUGEBAUER J.First-principles calculations for defects and impurities: Applications to III-nitrides[J]. Journal of Applied Physics, 2004, 95(8): 3851-3879.

[24] ZHANG S B, NORTHRUP J E. Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion[J]. Physical Review Letters, 1991, 67(17): 2339.

[25] KUMAGAI Y, OBA F. Electrostatics-based finite-size corrections for first-principles point defect calculations[J]. Physical Review B, 2014, 89(19): 195205.

[26] FREYSOLDT C, NEUGEBAUER J, VAN DE WALLE C G. Electrostatic interactions between charged defects in supercells[J]. Physica Status Solidi (b), 2011, 248(5): 1067-1076.

[27] CHEN W, PASQUARELLO A.Correspondence of defect energy levels in hybrid density functional theory and many-body perturbation theory[J]. Physical Review B, 2013, 88(11): 115104.

[28] JANOTTI A, VAN DE WALLE C G.Oxygen vacancies in ZnO[J]. Applied Physics Letters, 2005, 87(12): 122102.

[29] ALKAUSKAS A, LYONS J L, STEIAUF D, et al. First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: the example of GaN and ZnO[J]. Physical Review Letters, 2012, 109(26): 267401.

[30] ALKAUSKAS A, MCCLUSKEY M D, VAN DE WALLE C G.Tutorial: defects in semiconductors—combining experiment and theory[J]. Journal of Applied Physics, 2016, 119(18): 181101.

[31] HUANG K, RHYS A. Theory of light absorption and non-radiative transitions in F-centres[C].Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1950, 204(1078): 406-423.

[32] PETROSYAN A, OVANESYAN K, SHIRINYAN G, et al. The melt growth of large LuAP single crystals for PET scanners[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1): 168-172.

[33] MAKHOV V N, KIRIKOVA N Y, KIRM M,et al. Luminescence properties of YPO4: Nd3+: a promising VUV scintillator material[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486(1): 437-442.

[34] CHEN J, ZHAO G, LIU T.Optical polarized properties of the F2 center in YAlO3 crystal[J]. Journal of Electron Spectroscopy and Related Phenomena, 2010, 182(1): 47-50.

李金, 刘廷禹, 付明雪, 鲁晓晓. LuPO4晶体中F心和F+心的光谱性质模拟计算[J]. 光子学报, 2018, 47(7): 0716001. LI Jin, LIU Ting-yu, FU Ming-xue, LU Xiao-xiao. Optical Properties Simulating Calculation of the F or F+ Center in LuPO4 Crystal[J]. ACTA PHOTONICA SINICA, 2018, 47(7): 0716001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!