激光与光电子学进展, 2016, 53 (11): 113003, 网络出版: 2016-11-14   

利用蒙脱石富集实现水中痕量铜元素的激光诱导击穿光谱测量

Measurement of Trace Copper in Water by Laser-Induced Breakdown Spectroscopy Using Montmorillonite Substrate
作者单位
长江大学物理与光电工程学院, 湖北 荆州 434023
摘要
为了实现激光诱导击穿光谱(LIBS)技术对自然水体中痕量Cu元素的快速检测,实验以蒙脱石粉末为吸附基底,富集溶液中的Cu元素后进行LIBS测量。分析样品的发射光谱特性后确定了324.7 nm特征谱线为Cu的分析线;基于不同参数条件下分析谱线的强度和信噪比,得出最佳激光光斑尺寸为100 μm,最优激光能量为45.9 mJ,最佳延迟时间为3 μs。在最佳实验参数条件下,建立了水体中Cu元素的定标曲线,拟合结果显示,线性相关系数为0.996,检测限达到0.03 mg/L。利用该方法对不同地点采集的水样进行检测,所测结果与电感耦合等离子原子发射光谱法测量结果一致,表明该方法可用于自然水体中Cu元素的测量。
Abstract
In order to achieve rapid and highly sensitive detection of copper in natural water by laser-induced breakdown spectroscopy (LIBS), the water samples were analyzed by LIBS after copper therein was enriched by montmorillonite substrate. According to the emission spectral characteristics of copper enriched on the solid substrate, the characteristic spectral line of copper at 324.7 nm was chosen as the analytical line of copper. Measurements of the intensity and signal to noise ratio of the analytical line in different parameter occasions show that the optimal laser spot size is 100 μm, the optimal pulse laser energy was 45.9 mJ, and the optimal delay time is 3 μs. Under the optimized experimental conditions, the calibration curve of copper was established. The linear correlation coefficient with 0.996 indicates a good linear relationship between the copper concentration in water and the intensity of the analytical line. The detection limit for copper in water reached 0.03 mg/L. Furthermore, the method was used to determine the copper concentration in water samples collected from different sites. The measurement results are consistent with those measured by the inductively coupled plasma-atomic emission spectrometry, indicating that the method can be applied in the measurement of trace copper in natural water.
参考文献

[1] 陈兴龙, 董凤忠, 陶国强, 等. 激光诱导击穿光谱在地质录井岩性快速识别中的应用[J]. 中国激光, 2013, 40(12): 1215001.

    Chen Xinglong, Dong Fengzhong, Tao Guoqiang, et al. Fast lithology identification by laser-induced breakdown spectroscopy[J]. Chinese J Lasers, 2013, 40(12): 1215001.

[2] Labutin T A, Popov A M, Zaytsev S M, et al. Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 99: 94-100.

[3] de Lucia F C, Gottfried J L, Munson C A, et al. Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues[J]. Applied Optics, 2008, 47(31): G112-G121.

[4] 吴文韬, 马晓红, 赵华凤, 等. 激光诱导击穿光谱定量检测土壤微量重金属方法研究[J]. 光谱学与光谱分析, 2011, 31(2): 452-455.

    Wu Wentao, Mao Xiaohong, Zhao Huafeng, et al. Quantitative determination of trace heavy metals in polluted soil by laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011, 31(2): 452-455.

[5] Rai N K, Rai A K. LIBS-an efficient approach for the determination of Cr in industrial wastewater[J]. Journal of Hazardous Materials, 2008, 150(3): 835-838.

[6] Noll R, Bette H, Brysch A, et al. Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 637-649.

[7] Alvira F C, Orzi D J O, Bilmes G M.Surface treatment analyses of car bearings by using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 2009, 63(2): 202-208.

[8] Singh V K, Singh V, Rai A K, et al. Quantitative analysis of gallstones using laser-induced breakdown spectroscopy[J]. Applied Optics, 2008, 47(31): G38-G47.

[9] Samek O, Beddows D C S, Telle H H, et al. Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy[J]. Applied Physics A, 2099, 69(S1): S209-S202.

[10] Anzano J, Bonilla B, Montull-lbor B, et al. Rapid characterization of analgesic pills by laser-induced breakdown spectroscopy (LIBS)[J]. Medicinal Chemistry Research, 2009, 20: 656-664.

[11] St-Onge L, Archambault J F, Kwong E, et al. Rapid quantitative analysis of magnesium stearate in tablets using laser-induced breakdown spectroscopy[J]. Journal of Pharmacy & Pharmaceutical Science, 2005, 8(2): 272-288.

[12] Müller K, Stege H. Evaluation of the analytical potential of laser-induced breakdown spectrometry (LIBS) for the analysis of historical glasses[J]. Archaeometry, 2003, 45(3): 421-433.

[13] Anglos D. Laser-induced breakdown spectroscopy in art and archaeology[J]. Applied Spectroscopy, 2001, 55(6): 206A-205A.

[14] Chen Z J, Li H K, Liu M, et al. Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(1): 64-68.

[15] 修俊山, 候华明, 钟石磊, 等. 以滤纸为基质利用LIBS定量分析水溶液中铅元素[J]. 中国激光, 2011, 38(8): 0815003.

    Xiu Junshan, Hou Huaming, Zhong Shilei, et al. Quantitative determination of heavy metal element Pb in aqueous solutions by laser-induced breakdown spectroscopy using paper slice substrates[J]. Chinese J Lasers, 2011, 38(8): 0815003.

[16] Dockery C R, Pender J E, Goode S R, et al. Speciation of chromium via laser-induced breakdown spectroscopy of ion exchange polymer membranes[J]. Applied Spectroscopy, 2005, 59(2): 252-257.

[17] 石焕, 赵南京, 王春龙, 等. 水体痕量重金属Ni的激光诱导击穿光谱测量研究[J]. 光谱学与光谱分析, 2012, 32(1): 25-28.

    Shi Huan, Zhao Nanjing, Wang Chunlong, et al. Study on measurement of trace heavy metal Ni in water by laser-induced breakdown spectroscopy technique[J]. Spectroscopy and Spectral Analysis, 2012, 32(1): 25-28.

[18] 王春龙, 刘建国, 赵南京, 等. 石墨富集方式下水中痕量元素铅的激光诱导击穿光谱测量[J]. 中国激光, 2011, 38(11): 1115002.

    Wang Chunlong, Liu Jianguo, Zhao Nanjing, et al. Enrichment of trace lead in water with graphite and measurement by laser-induced breakdown spectroscopy[J]. Chinese J Lasers, 2011, 38(11): 1115002.

[19] Chen Z J, Li H K, Zhao F, et al. Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical deposition of the analytes on an aluminium surface[J]. Journal of Analytical Atomic Spectrometry, 2008, 23: 871-875.

[20] Lu Y, Li Y, Wu J L, et al. Guided conversion to enhance cation detection in water using laser-induced breakdown spectroscopy[J]. Applied Optics, 2010, 49(13): C75-C79.

[21] 郑美兰, 姚明印, 何秀文, 等. 基于滤纸富集法提高LIBS检测水体Cu灵敏度的研究[J]. 激光与光电子学进展, 2013, 50(7): 073004.

    Zhen Meilan, Yao Mingyin, He Xiuwen, et al. Improving detection sensitivity of Cu in sewage by laser-induced breakdown spectroscopy using filter paper enrichment[J]. Laser & Optoelectronics Progress, 2013, 50(7): 073004.

吴青峰, 郝东元, 石俊, 黄达, 陈善俊, 熊艳, 王阳恩. 利用蒙脱石富集实现水中痕量铜元素的激光诱导击穿光谱测量[J]. 激光与光电子学进展, 2016, 53(11): 113003. Wu Qingfeng, Hao Dongyuan, Shi Jun, Huang Da, Chen Shanjun, Xiong Yan, Wang Yang′en. Measurement of Trace Copper in Water by Laser-Induced Breakdown Spectroscopy Using Montmorillonite Substrate[J]. Laser & Optoelectronics Progress, 2016, 53(11): 113003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!