发光学报, 2015, 36 (5): 497, 网络出版: 2015-05-20   

纤锌矿Zn1-xMgxO极化特性的第一性原理 GGA+U方法研究

Polarization Properties of Wurtzite Structure Zn1-xMgxO∶A GGA+U Investigation
作者单位
1 安徽理工大学 电气与信息工程学院, 安徽 淮南 232001
2 安徽理工大学 数理学院, 安徽 淮南 232001
3 南京大学电子科学与工程学院 微结构国家实验室, 江苏 南京 210093
摘要
高迁移率的二维电子气在纤锌矿结构Zn1-xMgxO/ZnO异质结构中被发现, 二维电子气的产生很可能是由于这两种材料界面上存在不连续性极化。本文基于第一性原理GGA+U方法研究了Zn1-xMgxO合金的自发极化随Mg组分x的变化关系, 其中极化特性的计算采用Berry-phase方法。我们将极化分为3个部分: 电子极化、晶格极化以及压电极化, 结果表明压电极化在总极化中起着主要作用。
Abstract
Two-dimensional electron gas (2DEG) with high-mobility was found in wurtzite ZnO/Zn1-xMgxO heterostructures which probably arises from the polarization discontinuity at the ZnO/Zn1-xMgxO interface. In this paper, we studied the polarization properties of Zn1-xMgxO alloy at different Mg composition using first-principles calculations with GGA+U method, and the polarization properties were calculated according to Berry-phase method. In addition, the polarization was divided into three parts: electronic polarization, iron polarization and piezoelectric polarization. The results indicate that the piezoelectric polarization is the most important part in these contributions.
参考文献

[1] Chakhalian J, Millis A J, Rondinelli J. Whither the oxide interface [J]. Nat. Mater., 2012, 11(2): 92-94.

[2] Hwang H Y, Iwasa Y, Kawasaki M, et al. Emergent phenomena at oxide interfaces [J]. Nat. Mater., 2012, 11(2): 103-113.

[3] Tampo H, Shibata H, Matsubara K, et al. Two-dimensional electron gas in Zn polar heterostructures grown by radical source molecular beam epitaxy [J]. Appl. Phys. Lett., 2006, 89(13): 132113-1-3.

[4] Tsukazaki A, Ohtomo A, Kita T, et al. Quantum hall effect in polar oxide heterostructures [J]. Science, 2007, 315(5817): 1388-1391.

[5] Tsukazaki A, Yuji H, Akasaka S, et al. High electron mobility exceeding 104 cm2·V-1·s-1 in MgZnO/ZnO single heterostructures grown by molecular-beam epitaxy [J]. Appl. Phys. Express, 2008, 1(5): 055004-1-5.

[6] Tsukazaki A, Akasaka S, Nakahara K, et al. Observation of the fractional quantum Hall effect in an oxide [J]. Nat. Mater., 2010, 9(11): 889-893.

[7] Chen H, Gu S L, Liu J G, et al. Two-dimensional electron gas related emissions in ZnMgO/ZnO heterostructures [J]. Appl. Phys. Lett., 2011, 99(21): 211906-1-3.

[8] Ye J D, Lim S T, Bosman M, et al. Spin-polarized wide electron slabs in functionally graded polar oxide heterostructures [J]. Sci. Rep., 2012, 2: 533-1-8.

[9] Monroy E, Omnes F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors [J]. Semicond. Sci. Technol., 2003, 18(14): R33-R51.

[10] Shen D Z, Mei Z X, Liang H L, et al. ZnO-based matierial, heterojunction and photoelctronic device [J]. Chin. J. Lumin.(发光学报), 2014, 35(1): 1-60 (in Chinese) .

[11] Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J]. Science, 2000, 287(5455): 1019-1022.

[12] Niranjan M K, Wang Y, Jaswal S S, et al. Prediction of a switchable two-dimensional electron gas at ferroelectric oxide interfaces [J]. Phys. Rev. Lett., 2009, 103(1): 016804-1-4.

[13] Wang Y, Niranjan M K, Janicka K, et al. Ferroelectric dead layer driven by a polar interface [J]. Phys. Rev. B, 2010, 82(9): 094114-1-10.

[14] Schleife A, Fuchs F, Furthmüller J, et al. First-principles study of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs [J]. Phys. Rev. B, 2006, 73(24): 245212-1-14.

[15] Dal Corso A, Posternak M, Resta R, et al. Ab initio study of piezoelectricity and spontaneous polarization in ZnO [J]. Phys. Rev. B, 1994, 50(15): 10715-10721.

[16] Limpijumnong S, Lambrecht W R L. Theoretical study of the relative stability of wurtzite and rocksalt phases in MgO and GaN [J]. Phys. Rev. B, 2001, 63(10): 104103-1-11.

[17] Zhang X D, Guo M L, Liu C L. First-principles investigation of electronic and optical properties in wurtzite Zn1-xMgxO [J]. Eur. Phys. J. B, 2008, 62(4): 417-421.

[18] Kim Y S, Lee E C, Chang K J. Stability of wurtzite and rocksalt MgxZn1-xO alloys[J]. J. Korean Phys. Soc., 2001, 39: S92-S96.

[19] Sanati M, Hart G L W, Zunger A. Ordering tendencies in octahedral MgO-ZnO alloys [J]. Phys. Rev. B, 2003, 68(15): 155210-1-14.

[20] Betancourt J, Saavedra-Arias J J, Burton J D. Polarization discontinuity induced two-dimensional electron gas at ZnO/Zn(Mg)O interfaces: A first-principles study [J]. Phys. Rev. B, 2013, 88(8): 085418-1-8.

[21] Wu X, Vanderbilt D, Hamann D R. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory [J]. Phys. Rev. B, 2005, 72(3): 035105-1-7.

吴孔平, 王智, 陈昌兆, 汤琨, 叶建东, 朱顺明, 顾书林. 纤锌矿Zn1-xMgxO极化特性的第一性原理 GGA+U方法研究[J]. 发光学报, 2015, 36(5): 497. WU Kong-ping, WANG Zhi, CHEN Cang-zhao, TANG kun, YE Jian-dong, ZHU Shun-ming, GU Shu-lin. Polarization Properties of Wurtzite Structure Zn1-xMgxO∶A GGA+U Investigation[J]. Chinese Journal of Luminescence, 2015, 36(5): 497.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!