强激光与粒子束, 2017, 29 (11): 113204, 网络出版: 2017-12-08  

电子辐照条件下初始电位对介质材料表面电位衰减特性的影响

Effect of initial potential on surface attenuation characteristics of dielectric materials under electron irradiation
作者单位
陆军工程大学石家庄校区 静电与电磁防护研究所, 石家庄 050003
摘要
为了研究航天器介质材料表面不同电位初始值对表面电位衰减特性的影响。利用航天器带电地面模拟实验设备对聚酰亚胺和聚四氟乙烯介质材料充电到不同电位值,然后关闭电子枪,用电位计测量介质材料表面电位的衰减曲线,并从理论上对cross-over现象进行分析。介质材料初始电位值越大,则表面电位衰减速度越快,且在一定的时间段内电位衰减效率随初始电位值的增大而变大;在相同的真空度条件下,对于初始电位值之和相等的两组衰减曲线,初始电位值之间差值较小的一组衰减曲线更容易出现cross-over现象;出现cross-over现象的时间和电子的迁移率相关,对于相同的两个初始电位,迁移率越大的材料则出现cross-over现象的时间越短,电位衰减会更快。航天器介质材料表面充电电位越大则衰减速度越快,在一定时间的衰减效率越高。
Abstract
This paper studies the effect of the initial values of different potentials on the surface potential attenuation of spacecraft dielectric materials. The method is as follows: charge the PI and PTFE dielectric materials to different potential values using spacecraft simulation equipment, then close the electron gun and measure the attenuation curve of the surface potential of the dielectric material with a potentiometer,and theoretically analyze the cross-over phenomenon. The result shows that, the higher the initial potential value of the dielectric material, the faster the surface potential decay rate, and the potential decay efficiency increases with the initial potential value in a certain period of time, under the same vacuum condition, for the two sets of attenuation curves with the same sum of initial potentials, the closer the initial potential values are, the more likely the cross-over phenomenon will occur; the time at which the cross-over occurs is related to the mobility of the electrons, under the same initial potentials, the longer the mobility, the shorter the time before the cross-over occur and the faster the potential attenuates. It is concluded that the values of the charge potential on the surface of the spacecraft affects the attenuation efficiency and the decay rate of the potential.
参考文献

[1] Kumar S, Murthy Reddy K V V S, Kumar A, et al. Development and characterization of polymer-ceramic continuous fiber reinforced functionally graded composites for aerospace application[J]. Aerospace Science and Technology, 2013, 26(1): 185-191.

[2] 刘业楠, 赵华, 易忠, 等. 空间站带电效应分析及对策[J]. 载人航天, 2013, 19(5): 6-12. (Liu Yenan, Zhao Hua, Yi Zhong, et al. Analysis and countermeasures of charging effects in space station. Journal of Aerospace, 2013, 19(5): 6-12)

[3] Ferguson D C. New frontiers in spacecraft charging[J]. IEEE Trans Plasma Science, 2012, 40(2): 139.

[4] Lu H, Schaff W J, Eastman L F, et al. Surface charge accumulation of InN films grown by molecular-beam epitaxy[J]. Applied Physics Letters, 2003, 82(11): 1736-1738.

[5] Yamamoto O, Hamada S, Fukuda T, et al. Charging characteristics of a solid insulator in vacuum under AC voltage excitation[J]. IEEE Trans Dielectrics and Electrical Insulation, 2006, 13(1): 2-9.

[6] Wild R, Benduhn J, Stollenwerk L. Surface charge transport and decay in dielectric barrier discharges[J]. Journal of Physics D-Applied Physics, 2014, 47(43): 435.

[7] 王立, 秦晓刚. 空间材料表面充放电性能试验评估方法研究[J]. 真空与低温, 2002, 8(2): 85-86. ( Wang Li, Qin Xiaogang. Study on evaluation method of charge and discharge performance on space material. Vacuum and Low Temperature, 2002, 8(2): 85-86)

[8] 庞永江, 徐跃民. 地面实验室模拟空间等离子体环境的初步测试[J]. 空间科学学报, 2001, 21(3): 259-265. (Pang Yongjiang, Xu Yuemin. Preliminary test of simulated spatial plasma environment in ground laboratory. Acta Scientiae Sinica, 2001, 21 (3): 259-265)

[9] 刘海波, 李得天, 杨生胜, 等. 不同面积Kapton材料的放电特性实验研究[J]. 真空与低温, 2014, 20(3): 140-144. (Liu Haibo, Li Derian, Yang Shengsheng, et al. Experimental study on discharge characteristics of different areas of Kapton materials. Vacuum and Low Temperature, 2014, 20(3): 140-144)

[10] Sudarshan T, Dougal R A. Mechanisms of surface flashover along solid dielectrics in compressed gases-A review[J]. IEEE Trans Electrical Insulation , 1986, 21(5): 727-746.

[11] Kumara S, Ma Bin, Serdyuk Y V, et al . Surface charge decay on HTV silicone rubber: Effect of material treatment by corona discharges[J]. IEEE Trans Dielectrics and Electrical Insulation, 2012, 19(6): 2189-2195.

[12] Molinie P. A review of mechanisms and models accounting for surface potential decay[J]. IEEE Trans Plasma Science, 2012, 40(2): 167-176.

[13] Du B X, Xiao M. Influence of surface charge on DC flashover characteristics of epoxy/BN nanocomposites[J]. IEEE Trans actions on Dielectrics and Electrical Insulation, 2014, 21(2): 529-536.

[14] Tao S, Wenjin Y, Cheng Z, et al. Enhanced surface flashover strength in vacuum of polymethyl-methacrylate by surface modification using atmospheric-pressure dielectric barrier discharge[J]. Applied Physics Letters, 2014, 105: 071607.

[15] Rychkov D, Kuznetsov A, Rychkov A. Electret properties of polyethylene and polytetrafluoroethylene films with chemically modified surface[J]. IEEE Trans Dielectrics and Electrical Insulation, 2011, 18(1): 8-14.

[16] 左应红, 王建国, 罗旭东, 等. 双麦克斯韦分布等离子体对航天器表面的充电效应[J]. 强激光与粒子束, 2015, 27: 114003. (Zuo Yinghong, Wang Jianguo, Luo Xudong, et al. Charging effect of two-Maxwell-distributed plasma on the surface of spacecraft. High Power Laser and Particle Beams, 2015, 27: 114003)

[17] 曹鹤飞, 孙永卫, 原青云, 等. 航天器背面接地介质材料等离子体充电研究[J]. 强激光与粒子束, 2015, 27: 103204. (Cao Hefei, Sun Yongwei, Yuan Qingyun, et al. Study on plasma charging of ground dielectric material on the back of spacecraft. High Power Laser and Particle Beams, 2015, 27: 103204)

代银松, 张希军, 原青云. 电子辐照条件下初始电位对介质材料表面电位衰减特性的影响[J]. 强激光与粒子束, 2017, 29(11): 113204. Dai Yinsong, Zhang Xijun, Yuan Qingyun. Effect of initial potential on surface attenuation characteristics of dielectric materials under electron irradiation[J]. High Power Laser and Particle Beams, 2017, 29(11): 113204.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!