红外与毫米波学报, 2017, 36 (2): 173, 网络出版: 2017-06-06   

高光谱遥感图像非线性解混研究综述

Review of nonlinear unmixing for hyperspectral remote sensing imagery
杨斌 1,2,3,*王斌 1,2,3
作者单位
1 复旦大学 电磁波信息科学教育部重点实验室, 上海 200433
2 北京师范大学 地表过程与资源生态国家重点实验室, 北京 100875
3 复旦大学 信息学院智慧网络与系统研究中心, 上海 200433
摘要
介绍了近年来非线性光谱解混方法的发展状况, 主要包括矿物沙地地区的紧密混合模型和植被覆盖区域的多层次混合模型, 以及基于这些模型的非线性解混算法和利用核函数、流形学习等方法的数据驱动非线性光谱解混算法及非线性探测算法.最后分析总结了现有非线性解混模型与算法的优势与缺陷及未来的研究趋势.
Abstract
The development of non-linear spectral unmixing methods in recent years is introduced. There are mainly two types of models. One is the close-mixing model of mineral sand area and the other is multi-level mixing model of vegetation coverage area. The data-driven nonlinear spectral unmixing algorithms such as kernel methods and manifold learning are presented. Both advantages and disadvantages of these models and algorithms are summarized and the future research trends are analyzed.
参考文献

[1] Goetz A F H, Vane G, Solomon J E, et al. Imaging spectrometry for earth remote-sensing [J]. Science, 1985, 228(4704): 1147-1153.

[2] TONG Qin-Xi, ZHANG Bin, ZHENG Lan-Fen. Hyperspectral remote sensing—principles, techniques and applications [M]. Beijing: Higher Education Press(童庆禧, 张兵, 郑兰芬. 高光谱遥感—原理、技术与应用. 北京: 高等教育出版社), 2006.

[3] Tong Q, Xue Y, Zhang L. Progress in hyperspectral remote sensing science and technology in china over the past three decades [J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2014, 7(1): 70-91.

[4] Keshava N, Mustard J F. Spectral unmixing [J]. IEEE Signal Process. Mag., 2002, 19(1): 44-57.

[5] Bioucas-Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches [J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2012, 5(2): 354-379.

[6] Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data [J]. in Proc. Summ. 5th Annu. JPL Airborne Geosci. Workshop, R. O. Green, Ed, 1995, 1: 23-26.

[7] Winter M E. N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data [J].in Proc. SPIE Conf. Imaging Spectrometry V, 1999, 3753: 266-275.

[8] Nascimento J M P, Dias J M B. Vertex component analysis: A fast algorithm to unmix hyperspectral data [J]. IEEE Trans. Geosci. Remote Sens., 2005, 43(4):898-910.

[9] Tao X, Wang B, Zhang L. Orthogonal bases approach for the decomposition of mixed pixels in hyperspectral imagery [J]. IEEE Geosci. Remote Sens. Lett., 2009, 6(2): 219-223.

[10] Heinz D C, Chang C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2001, 39(3):529-545.

[11] Pu H, Xia W, Wang B, et al. A fully constrained linear spectral unmixing algorithm based on distance geometry [J]. IEEE Trans. Geosci. Remote Sens., 2014, 52(2):1157-1176.

[12] Xia W, Liu X, Wang B, et al. Independent component analysis for blind unmixing of hyperspectral imagery with additional constraints [J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(6):2165-2171.

[13] Lee D D, Seung H S. Learning the parts of objects by nonnegative matrix factorization [J]. Nature, 1999, 401(6755):788-791.

[14] Miao L, Qi H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization [J]. IEEE Trans. Geosci. Remote Sens., 2007, 45(3):765-777.

[15] Yu Y, Guo S, Sun W. Minimum distance constrained nonnegative matrix factorization for the endmember extraction of hyperspectral images [J]. in Proc. SPIE MIPPR 2007: Remote Sensing and GIS Data Processing and Applications, and Innovative Multispectral Technology and Applications, 2007, 6790:151-159.

[16] Wang N, Du B, Zhang L. An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing [J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2013, 6(2):554-569.

[17] Schachtner R, P ppel G, Tomé A M, et al. Minimum determinant constraint for non-negative matrix factorization [J]. Lecture Notes in Computer Science, 2009, 5441:106-133.

[18] Jia S, Qian Y. Constrained nonnegative matrix factorization for hyperspectral unmixing [J]. IEEE Trans. Geosci. Remote Sens., 2009, 47(1):161-173.

[19] Liu X, Xia W, Wang B, et al. An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data [J]. IEEE Trans. Geosci. Remote Sens., 2011, 42(9): 757-772.

[20] Hapke B W. Bidirectional reflectance spectroscopy. I. Theory [J]. J. Geophys. Res., 1981, 86:3039-3054.

[21] Dobigeon N, Tourneret J, Richard C, et al. Nonlinear unmixing of hyperspectral images: models and algorithms [J]. IEEE Signal Process. Mag., 2014, 31(1):82-94.

[22] Heylen R, Parente M, Gader P. A review of nonlinear hyperspectral unmixing methods [J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2014,7(6):1844-1868.

[23] Close R, Gader P, Wilson J, et al. Using physics-based macroscopic and microscopic mixture models for hyperspectral pixel unmixing [J]. in Proc. Soc. Photo-Opt. Instrum. Eng. (SPIE), Algorithms Technol. Multispectral Hyperspectral Ultraspectral Imagery XVIII, 2012, 8390: 1-13.

[24] Mustard J F, Pieters C M. Quantitative abundance estimates from bidirectional reflectance measurements [J]. J. Geophys. Res. Solid Earth, 1987, 92:617-626.

[25] Rahman M T, Alam M S. Nonlinear unmixing of hyperspectral data using BDRF and maximum likelihood algorithm [J]. in Proc. Soc. Photo-Opt. Instrum. Eng. (SPIE), Automatic Target Recognition. XVII, 2007, 6566: 1-10.

[26] LIN Hong-Lei, ZHANG Xia, SUN Yan-Li. Hyperspectral sparse unmixing of minerals with single scattering albedo [J]. Journal of Remote Sensing(林红磊, 张霞, 孙艳丽. 基于单次散射反照率的矿物高光谱稀疏解混. 遥感学报), 2016, 20(1): 53-61.

[27] Close R, Gader P, Zare A, et al. Endmember extraction using the physics-based multi-mixture pixel model [J]. in Proc. Soc. Photo-Opt. Instrum. Eng. (SPIE), Imag. Spectrom. XVII, 2012, 8515: 1-14.

[28] Close R, Gader P, Wilson J. Hyperspectral unmixing using macroscopic and microscopic mixture models [J]. J. Appl. Remote Sens., 2014, 8(1): 1-16.

[29] Heylen R, Gader P. Nonlinear spectral unmixing with a linear mixture of intimate mixtures model [J]. IEEE Geosci. Remote Sens. Lett., 2014, 11(7):1195-1199.

[30] Borel C C, Gerstl S A. Nonlinear spectral unmixing models for vegetative and soil surfaces [J]. Remote Sens. Environ., 1994, 47:403-416.

[31] Ray T W, Murray B C. Nonlinear spectral mixing in desert vegetation [J]. Remote Sens. Environ., 1996, 55(1): 59-64.

[32] Nascimento J M P, Bioucas-Dias J M. Nonlinear mixture model for hyperspectral unmixing [J]. in Proc. Soc. Photo-Opt. Instrum. Eng.(SPIE), Image Signal Process. Remote Sens. XV, 2009, 7477: 1-8.

[33] Altmann Y, Dobigeon N, Tourneret J. Bilinear models for nonlinear unmixing of hyperspectral images[C]. Lisbon: 2011.

[34] Fan W, Hu B, Miller J, et al. Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated forest hyperspectral data [J]. Int. J. Remote Sens., 2009, 30(11): 2951-2962.

[35] Halimi A, Altmann Y, Dobigeon N, et al. Nonlinear unmixing of hyperspectral images using a generalized bilinear model [J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(11): 4153-4162.

[36] Halimi A, Altmann Y, Dobigeon N, et al. Unmixing hyperspectral images using the generalized bilinear model [C]. Vancouver: 2011.

[37] Altmann Y, Halimi A, Dobigeon N, et al. A post nonlinear mixing model for hyperspectral images unmixing [C]. Vancouver: 2011.

[38] Altmann Y, Halimi A, Dobigeon N, et al. Supervised nonlinear spectral unmixing using a post-nonlinear mixing model for hyperspectral imagery [J]. IEEE Trans. Image Process., 2012, 21(6):3017-3025.

[39] YU Xian-Chuan, LI Jian-Guang, XU Jin-Dong, et al. A nonlinear spectral mixture model for hyperspectral imagery based on secondary scattering [J]. Remote Sensing for Land and Resource(余先川, 李建广, 徐金东, 等. 基于二次散射的高光谱遥感图像光谱非线性混合模型. 国土资源遥感), 2013, 25(1): 18-25.

[40] TANG Xiao-Yan, GAO Kun, NI Guo-Qiang. Advances in nonlinear spectral unmixing of hyperspectral images [J]. Remote Sensing Technology and Applications(唐晓燕, 高昆, 倪国强. 高光谱图像非线性解混方法的研究进展. 遥感技术与应用), 2013, 28(4):731-738.

[41] Meganem I, Déliot P, Briottet X, et al. Linear quadratic mixing model for reflectances in urban environments [J]. IEEE Trans. Geosci. Remote Sens., 2014, 52(1):544-558.

[42] Somers B, Cools K, Delalieux S, et al. Nonlinear hyperspectral image analysis for tree cover estimates in orchards [J]. Remote Sens. Environ., 2009, 113:1183-1193.

[43] Tits L, Delabastita W, Somers B, et al. First results of quantifying nonlinear mixing effects in heterogeneous forests: A modeling approach [C]. Munich: 2012.

[44] Somers B, Tits L, Coppin P. Quantifying nonlinear spectral mixing in vegetated areas: Computer simulation model validation and first results [J]. IEEE J. Sel. Topics Appl. Earth Observ., 2014, 7(6):1956-1965.

[45] Dobigeon N, Tits L, Somers B, et al. A comparison of nonlinear mixing models for vegetated areas using simulated and real hyperspectral data [J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2014, 7(6): 1869-1878.

[46] Dobigeon N, Tits L, Somers B, et al. Nonlinear unmixing of vegetated areas: a model comparison based on simulated and real hyperspectral data [C]. in Proc. IEEE Int. Workshop Hyperspectral Image Signal Process., 2014:1-4.

[47] Tits L, Delabastita W, Somers B, et al. Validating nonlinear mixing models: benchmark datasets from vegetated areas [C]. in Proc. IEEE Workshop Hyperspectral Image Signal Process. Evol. Remote Sens. (WHISPERS), 2014:1-6.

[48] Heylen R, Scheunders P. A multilinear mixing model for nonlinear spectral unmixing [J]. IEEE Trans. Geosci. Remote Sens., 2015, 54(1):240-251.

[49] Marinoni A, Gamba P. A novel approach for efficient p-linear hyperspectral unmixing [J]. IEEE J. Sel. Signal Process, 2015, 9(6):1156-1168.

[50] Marinoni A, Plaza J, Plaza A, et al. Nonlinear hyperspectral unmixing using nonlinearity order estimation and polytope decomposition [J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2015, 8(6):2644-2654.

[51] Pu H, Chen Z, Wang B, et al. Constrained least squares algorithms for nonlinear unmixing of hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2015, 53(3):1287-1303.

[52] Heylen R, Scheunders P, Rangarajan A, et al. Nonlinear unmixing by using different metrics in a linear unmixing chain [J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2014, 8(6): 2655-2664.

[53] Heylen R, Scheunders P. Calculation of geodesic distances in non-linear mixing models: Application to the generalized bilinear model[J]. IEEE Geosci. Remote Sens. Lett., 2012, 9(4):644-648.

[54] Chen X, Chen J, Jia X, et al. A quantitative analysis of virtual endmembers’ increased impact on the collinearity effect in spectral unmixing [J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(8):2945-2956.

[55] Raksuntorn N, Du Q. Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment [J]. IEEE Geosci. Remote Sens. Lett., 2010, 7(4):836-840.

[56] Raksuntorn N, Du Q, Younan N, et al. Orthogonal matching pursuit for nonlinear unmixing of hyperspectral imagery [C]. Xi'an: 2014.

[57] Cui J, Li X, Zhao L. Nonlinear spectral mixture analysis by determining per-pixel endmember sets [J]. IEEE Geosci. Remote Sens. Lett., 2014, 11(8):1404-1408.

[58] Chen J, Richard C, Honeine P. Nonlinear estimation of material abundances in hyperspectral images with l1-norm spatial regularization [J]. IEEE Trans. Geosci. Remote Sens., 2013, 52(5):2654-2665.

[59] Chen J, Richard C, Hero A O. Nonlinear unmixing of hyperspectral images using a semiparametric model and spatial regularization[C]. Florence: 2014.

[60] Qu Q, Nasrabadi N M, Tran T D. Abundance estimation for bilinear mixture models via joint sparse and low-rank representation [J]. IEEE Trans. Geosci. Remote Sens., 2014, 52(7):4404-4423.

[61] Altmann Y, Dobigeon N, McLaughlin S, et al. Unsupervised nonlinear unmixing of hyperspectral images using Gaussian processes [C]. Kyoto: 2012.

[62] Altmann Y, Dobigeon N, McLaughlin S, et al. Nonlinear spectral unmixing of hyperspectral images using gaussian processes [J]. IEEE Trans. Signal Process, 2013, 61(10):2442-2453.

[63] Altmann Y, Dobigeon N, Tourneret J. Bayesian unsupervised unmixing of hyperspectral images using a post-nonlinear model [C]. Marrakech: 2013.

[64] Altmann Y, Dobigeon N, Tourneret J. Unsupervised post-nonlinear unmixing of hyperspectral images using a hamiltonian monte carlo algorithm [J]. IEEE Trans. Image Process., 2014, 23(6):2663-2675.

[65] Eches O, Guillaume M. A bilinear-bilinear nonnegative matrix factorization method for hyperspectral unmixing [J]. IEEE Geosci. Remote Sens. Lett., 2014, 11(4):778-782.

[66] Yokoya N, Chanussot J, Iwasaki A. Nonlinear unmixing of hyperspectral data using semi-nonnegative matrix factorization [J]. IEEE Trans. Geosci. Remote Sens., 2014, 52(2):1430-1437.

[67] Taylor J S, Cristianini N. Kernel methods for pattern analysis [M]. England: Cambridge University Press, 2004.

[68] Guilfoyle K J, Althouse M L, Chang C. A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks [J]. IEEE Trans. Geosci. Remote Sens., 2001, 39(10):2314-2318.

[69] Plaza J, Martínez P, Péerez R, et al. Nonlinear neural network mixture models for fractional abundance estimation in AVIRIS hyperspectral images [C]. in Proc. AVIRIS Workshop, Pasadena, CA, 2004.

[70] Plaza J, Plaza A, Perez R, et al. On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images [J]. Pattern Recogn., 2009, 42(11): 3032-3045.

[71] Altmann Y, Dobigeon N, Tourneret J, et al. Nonlinear unmixing of hyperspectral images using radial basis functions and orthogonal least squares [C]. Vancouver: 2011.

[72] Ayerdi B, Grana M. Hyperspectral image nonlinear unmixing and reconstruction by ELM regression ensemble [J]. Neurocomputing, 2015, 14(2):143-167.

[73] Ayerdi B, Grana M. Hyperspectral image nonlinear unmixing by ensemble ELM regression [J]. in Proc. Adaptation, Learning and Optimization, 2015, 4:289-297.

[74] Liao W, Pizurica A, Philips W, et al. A fast iterative kernel PCA feature extraction for hyperspectral images [C]. Hong Kong:2010.

[75] Zhang L, Wu B, Huang B, et al. Nonlinear estimation of subpixel proportion via kernel least square regression [J]. Int. J. Remote Sens., 2007, 28(18):4157-4172.

[76] Broadwater J, Chellappa R, Banerjee A, et al. Kernel fully constrained least squares abundance estimates [C]. Barcelona: 2007.

[77] Broadwater J, Banerjee A. A comparison of kernel functions for intimate mixture models [C]. Grenoble: 2009.

[78] Broadwater J, Banerjee A. A generalized kernel for areal and intimate mixtures [C]. Reykjavik: 2010.

[79] Broadwater J, Banerjee A. Mapping intimate mixtures using an adaptive kernel-based technique [C]. Lisbon: 2011.

[80] Rand R S. Automated endmember determination and adaptive spectral mixture analysis using kernel methods [J]. Imaging Spectrometry, 2013, 8870:1-17.

[81] Rand R S. Using kernel-based and single-scattering albedo approaches for generalized spectral mixture analysis of hyperspectral imagery [J]. Imaging Spectrometry, 2014, 9222:1-18.

[82] Rand R S, Resmini R G, Allen D W. Characterizing intimate mixtures of materials in hyperspectral imagery with albedo-based and kernel-based approaches [J]. Imaging Spectrometry, 2015, 9611:1-20.

[83] Plaza J, Plaza A, Martinez P, et al. Nonlinear mixture models for analyzing laboratory simulated-forest hyperspectral data [J]. Image and Signal Processing for Remote Sensing, 2004, 5238:480-487.

[84] WU Bo, ZHANG Liang-Pei, LI Ping-Xiang. Unmixing hyperspectral imagery based on support vector nonlinear approxmiating regression [J]. Journal of Remote Sensing(吴波, 张良培, 李平湘. 基于支撑向量回归的高光谱混合像元非线性分解. 遥感学报), 2006, 10(3): 312-318.

[85] LI Hui, ZHANG Jin-Qu, CAO Yang, et al. Nonlinear spectral unmixing for optimizing per-pixel endmember sets [J]. Acta Geodaetica et Cartographica Sinica(李慧, 张金区, 曹阳, 等. 端元可变非线性混合像元分解模型. 测绘学报), 2016, 45(1): 80-86.

[86] Chen J, Richard C, Honeine P. Nonlinear unmixing of hyperspectral data with partially linear least-squares support vector regression [C]. Vancouver: 2013.

[87] Wu B, Zhang L, Li P, et al. Nonlinear estimation of hyperspectral mixture pixel proportion based on kernel orthogonal subspace projection [J]. Advances in Neural Networks, 2006, 3971:1070-1075.

[88] Zhao L, Zheng J, Li X, et al. Kernel simplex growing algorithm for hyperspectral endmember extraction [J]. Journal of Applied Remote Sensing, 2014, 8(1):1-15.

[89] Zhao L, Li F, Cui J. An endmember extraction algorithm for hyperspectral imagery based on kernel orthogonal subspace projection [C]. Sichuan: 2012.

[90] Liu K, Wong E, Du E Y, et al. Kernel-based linear spectral mixture analysis [J]. IEEE Geosci. Remote Sens. Lett., 2012, 9(1):129-133.

[91] Zhao L, Fan M, Li X, et al. Fast implementation of linear and nonlinear simplex growing algorithm for hyperspectral endmember extraction [J]. Optik -International Journal for Light and Electron Optics, 2015, 126:1-20.

[92] Chen J, Richard C, Honeine P. A novel kernel-based nonlinear unmixing scheme of hyperspectral images [C]. Pacific Grove: 2011.

[93] Chen J, Richard C, Honeine P. Nonlinear unmixing of hyperspectral data based on a linear mixture/nonlinear-fuctuation model [J]. IEEE Trans. Signal Process, 2013, 61(2):480-492.

[94] Chen J, Richard C, Honeine P. Nonlinear unmixing of hyperspectral images with multi-kernel learning [C]. Shanghai: 2012.

[95] Liu K, Lin Y, Chen C. Linear spectral mixture analysis via multiple-kernel learning for hyperspectral image classification [J]. IEEE Trans. Geosci. Remote Sens., 2015, 53(4):2254-2269.

[96] Gu Y, Wang S, Jia X. Spectral unmixing in multiple-kernel hilbert space for hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2013, 51(7):3968-3980.

[97] TAN Xiong, YU Xu-Chu, ZHANG Peng-Qiang, et al. Nonlinear mixed pixel decomposition of hyperspectral imagery based on multiple kernel SVM[J]. Optics and Precision Engineering(谭熊, 余旭初, 张鹏强, 等. 基于多核支持向量机的高光谱影像非线性混合像元分解. 光学 精密工程), 2014, 22(7):1912-1920.

[98] Dobigeon N, Fevotte C. Robust nonnegative matrix factorization for nonlinear unmixing of hyperspectral images [C]. 5rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2013.

[99] Harmeling S, Ziehe A, Kawanabe M, et al. Kernel feature spaces and nonlinear blind source separation [J]. Advances in neural information processing systems, 2002:1-8.

[100] Duong V, Hsieh W, Bao P T, et al. An overview of kernel based nonnegative matrix factorization [C]. Xi’an: 2014.

[101] Zhang D, Zhou Z, Chen S. Non-negative matrix factorization on kernels. 2004.

[102] Wu X, Li X, Zhao L. A kernel spatial complexity-based nonlinear unmixing method of hyperspectral imagery [J]. in Proc. Life Syst. Model. Intell. Comput., 2010, 6330: 451-458.

[103] Fang B, Li Y, Zhang P, et al. Kernel sparse NMF for hyperspectral unmixing [C]. Xi’an: 2014.

[104] LI Xiao-Run, WU Xiao-Ming, ZHAO Liao-Ying. Unsupervised nonlinear decomposing method of hyperspectral imagery [J]. Journal of Zhejiang University(Engineering Science)(厉小润, 伍小明, 赵辽英. 非监督的高光谱混合像元非线性分解方法. 浙江大学学报(工学版)), 2011, 45(4):607-613.

[105] Li X, Cui J, Zhao J. Blind nonlinear hyperspectral unmixing based on constrained kernel nonnegative matrix factorization [J]. Signal, Image and Video Processing, 2012, 8(8):1555-1567.

[106] CUI Jian-Tao, LI Xiao-Run, ZHAO Liao-Ying. Spectral analysis for subpixel materials based on kernel parital nonnegative matrix factorization [J]. Chinese Space Science and Technology(崔建涛, 厉小润, 赵辽英. 基于核部分非负矩阵分解的亚像元级地物光谱分析. 中国空间科学技术), 2014, 4: 46-65.

[107] An A, Yun J, Choi S. Multiple kernel nonnegative matrix factorization [C]. Prague: 2011.

[108] Gu Y, Wang Q, Wang H, et al. Multiple kernel learning via low-rank nonnegative matrix factorization for classification of hyperspectral imagery [J]. IEEE J. Sel. Topics Appl. Earth Observ., 2015, 8(6): 2739-2751.

[109] Cui J, Li X, Zhao L. Nonlinear hyperspectral unmixing based on constrained multiple kernel NMF [J]. Satellite Data Compression, Communications, and Processing, 2014, 9124:1-6.

[110] Tenenbaum J B, DeSilva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(22): 2319-2323.

[111] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(22):2323-2326.

[112] Heylen R, Burazerovic′ D, Scheunders P. Nonlinear spectral unmixing by geodesic simplex volume maximization [J]. IEEE J. Sel. Topics Signal Process., 2011, 5(3):534-542.

[113] Heylen R, Scheunders P. Non-linear fully-constrained spectral unmixing [C]. Vancouver: 2011.

[114] Heylen R, Scheunders P. A distance geometric framework for nonlinear hyperspectral unmixing [J]. IEEE J. Sel. Topics Signal Process., 2014, 7(6):1879-1888.

[115] Chi J, Crawford M M. Selection of landmark points on nonlinear manifolds for spectral unmixing using local homogeneity [J]. IEEE Geosci. Remote Sens. Lett., 2013, 10(4): 711-715.

[116] Chi J, Crawford M M. Active landmark sampling for manifold learning based spectral unmixing [J]. IEEE Geosci. Remote Sens. Lett., 2014, 11(11):1881-1885.

[117] TANG Xiao-Yan, GAO Kun, NI Guo-Qiang, et al. An improved N-FINDR endmember extraction algorithm based on manifold learning and spatial information [J]. Remote Sensing Technology and Applications(唐晓燕, 高昆, 倪国强, 等. 基于流形学习和空间信息的改进N-FINDR端元提取算法. 光谱学与光谱分析), 2013, 33(9): 2519-2524.

[118] Lu X, Wu H, Yuan Y, et al. Manifold regularized sparse NMF for hyperspectral unmixing [J]. IEEE Trans. Geosci. Remote Sens., 2013, 51(5):2815-2825.

[119] Altmann Y, Dobigeon N, Tourneret J. Detecting nonlinear mixtures in hyperspectral images [C]. Shanghai: 2012.

[120] Altmann Y, Dobigeon N, Tourneret J. Nonlinearity detection in hyperspectral images using a polynomial post-nonlinear mixing model [J]. IEEE Trans. Image Process., 2013, 22(4):1267-1276.

[121] Altmann Y, Dobigeon N, Tourneret J, et al. A robust test for nonlinear mixture detection in hyperspectral images [C]. Vancouver: 2013.

[122] Altmann Y, Dobigeon N, McLaughlin S, et al. Residual component analysis of hyperspectral images: application to joint nonlinear unmixing and nonlinearity detection [J]. IEEE Trans. Image Process, 2014, 23(5): 2148-2158.

杨斌, 王斌. 高光谱遥感图像非线性解混研究综述[J]. 红外与毫米波学报, 2017, 36(2): 173. YANG Bin, WANG Bin. Review of nonlinear unmixing for hyperspectral remote sensing imagery[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 173.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!