激光生物学报, 2013, 22 (3): 201, 网络出版: 2015-07-24   

重离子辐照酿酒酵母DNA损伤修复途径研究进展

The Research Progress of DNA Damages Repair Pathways Induced by Heavy Ion Irradiation in Saccharomyces cerevisiaes
作者单位
1 中国科学院近代物理研究所, 甘肃 兰州 730000
2 兰州大学药学院, 甘肃 兰州 730000
引用该论文

曹国珍, 陆栋, 张苗苗, 王菊芳, 马良, 李欣, 李文建. 重离子辐照酿酒酵母DNA损伤修复途径研究进展[J]. 激光生物学报, 2013, 22(3): 201.

CAO Guozhen, LU Dong, ZHANG Miaomiao, WANG Jufang, MA Liang, LI Xin, LI Wenjian. The Research Progress of DNA Damages Repair Pathways Induced by Heavy Ion Irradiation in Saccharomyces cerevisiaes[J]. Acta Laser Biology Sinica, 2013, 22(3): 201.

参考文献

[1] CICCIA A, ELLEDG S J. The DNA damage response: making it safe to play with knives[J]. Mol Cell, 2010, 40: 179-204.

[2] FILIPE M, Flávio A, Bjrn J, et al. Stimulation of DNA repair in Saccharomyces cerevisiaes by Ginkgo biloba leaf extract[J]. Food and Chemical Toxicology, 2011, 49: 1361-1366.

[3] BEGLEY T J, SAMSON L D. Network responses to DNA damaging agents[J]. DNA Repair, 2004, 3: 1123-1132.

[4] ZHANG Min, ZHU Rongrong, ZHANG Mingfeng, et al. High-energy pulse-electron-beam-induced molecular and cellular damage in Saccharomyces cerevisiaes[J]. Research in Microbiology, 2012, 7: 1-12.

[5] SUWAKI N, KLARE K, TARSOUNAS M. RAD51 paralogs: Roles in DNA damage signaling, recombinational repair and tumorigenesis[J]. Semin Cell Dev Biol, 2011, 28(7): 1-12.

[6] SALMON T B, EVERT B A, SONG B W, et al. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiaes[J]. Nucleic Acids Reserch, 2004, 12: 3712-3723.

[7] JACKSON S P. Sensing and repairing DNA double-strand breaks[J]. Carcinogenesis, 2002, 23: 687-696.

[8] 柴国林, 朱卫国. DNA的损伤与修复[J]. 中华肿瘤杂志, 2005, 27(10): 577-580.

    CAI Guolin, ZHU Weiguo. The damage and repair of DNA[J]. Chinese Journal of Oncology, 2005, 27(10): 577-580.

[9] 黄敏, 缪泽鸿. DNA双链断裂损伤修复系统研究进展[J]. 生理科学进展. 2007, 38(4): 295-300.

    HAUNG Min, MIAO Zehong. Repair pathways in response to DNA double-Strand breaks[J]. Progress in Physiological Sciences, 2007, 38(4): 295-300.

[10] 陈汉春, 彭兴华. Rad51同系物与DNA重组修复[J]. 国外医学遗传学分册, 2003, 26(4): 194 -197.

    CHEN Hanchun, PENG Xinghua.The homologue of Rad51 on DNA recombination repair[J]. Foreign Medical Sciences (Section of Genetics), 2003, 26(4): 194 -197.

[11] MANTHEY G M, BAILIS A M. Rad51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces erevisiae[J]. Plos One, 2010, 5(7): 1-12.

[12] 杜利清, 白剑强, 王小春, 等. 同源重组修复蛋白RAD51在骨肉瘤中的表达及其意义[J]. 陕西医学杂志, 2010, 39(11): 1443-1447.

    DU Liqing, BAI Jianqiang, WANG Xiaochun, et al. Expression and effect of RAD51 in osteosarcoma[J]. Shanxi Medical Journal, 2010, 39(11): 1443-1447.

[13] ZHANG Zhanchun. Damage of ionizing radiation and repair gene[J]. Foreign Med Sec Radiat Med, 2004, 28(1): 26-29.

[14] SYMINGTON L S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair[J]. Microbiol Mol Biol R, 2002, 66(4): 630-670.

[15] GENT D C, HOEIJMAKERS J H, KANAAR R. Chromosomal stability and the DNA double-stranded break connection[J]. Nat Rev Genet, 2001, 2(3): 196-206.

[16] WETERINGS E, DIK C, GENT V. Themechanism of non-homologous end joining: A synopsis of synapsis[J]. DNA Repair, 2004, 3: 1425-1435.

[17] 马守成, 赵达. DNA错配修复和临床肿瘤新进展[J]. 基础医学与临床, 2011, 1(12): 1402-1405.

    MA Shoucheng, ZHAO Da. The news for MMH and clinical cancer[J]. Basic & Clinical Medicine, 2011, 1(12): 1402-1405.

[18] SLUPPHAUG G, KAVLI B, KROKAN H E. The interacting pathways for prevention and repair of oxidative DNA damage[J]. Mutat Res, 2003, 531(1): 231-251.

[19] 毕利军, 周亚凤, 张先恩. DNA错配修复与癌症的发生及治疗[J]. 生物物理学报, 2006, 22(1): 1-5.

    BI Lijun, ZHOU Yafeng, ZHANG Xianen. DNA mismatch repair and occurrence and therapy of cancer[J].Acta Biophysica Sinica, 2006, 22(1): 1-5.

[20] KUNKEL T A, ERIE D A. DNA mismatch repair[J]. Annu Rev Biochem, 2005, 74: 681-710.

[21] MARTIN L, COFFEY M, LAWLER M, et al. DNA mismatch repair and the transition to hormone independence in breast and prostate cancer[J]. Cancer Lett, 2010, 291: 142-149.

[22] 刘卓, 吴建新. DNA错配修复系统组成和功能的研究进展. 现代生物医学进展, 2008, 8(6): 1160-1164.

    LIU Zhuo, WU Jianxin. Advance of researches on the composition and function of DNA mismatch repair system[J]. Progress in Modern Biomedicine, 2008, 8(6): 1160-1164.

[23] YUAN Fenghua, LAI Fangfang, GU Liya. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiaes by cell-free nuclear extracts[J]. Method, 2009, 48: 14-18.

[24] STONE J E, PETES T D. Analysis of the proteins involved in the in vivo repair of base-base mismatches and four-base loops formed during meiotic recombination in the Yeast Saccharomyces cerevisiaes[J]. Genetics, 2006, 173: 1223-1239.

[25] ZHANG Y, YUAN F, PRESNELL S R, et al. Reconstitution of 5′-directed human mismatch repair in a purified system[J]. Cell, 2005, 122(5): 693-705.

[26] ANTONY E, KHUBCHANDANI S, CHEN S, et al. Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiaes Msh2-Msh6 mismatch repair protein[J]. DNA Repair, 2006, 5: 153-162.

[27] 钟天映, 毕利军, 张先恩. 错配修复蛋白MutS的新功能位点[J]. 中国科学, 2011, (41)2: 168 -172.

    ZHONG Tianying, BI Lijun, ZHANG Xianen. New functional sites in MutS affect DNA mismatch repair[J]. Science China, 2011, (41)2: 168 -172

[28] 贾若欣, 周峥嵘, 万永杰, 等. 线粒体DNA损伤及其碱基切除修复的研究进展[J].畜牧与兽医, 2011, 43(9): 100-104.

    JIA Ruoxin, ZHOU Zhengrong, WAN Yongjie, et al. Process of mitochondrial DNA damage and its damage repair genes[J].Animal Husbandry & Veterinary Medicine, 2011, 43(9): 100-104.

[29] YU Shanshan, QIN Wei, ZHUANG Guoqiang, et al. Monitoring oxidative stress and DNA damage induced by heavy metals in yeast expressing a redox-sensitive green fluorescent protein[J]. Current Microbiology, 2009, 58(5): 504-510.

[30] COOKE M S, EVANS M D, DIZDAROGLU M, et al. Oxidative DNA damage: mechanisms, mutation and disease[J]. The FASEB Journal, 2003, 17(10): 1195-1201.

[31] 陈月琴, 宋国华, 冯龙, 等. 突变型DNA聚合酶β碱基切除修复活性的分析[J]. 中国现代医药杂志, 2009, 11(3): 43-46.

    CHEN Yueqin, SONG Guohua, FENG Long, et al. Analysis of base excision repair activity in mutant DNA polymerase β[J]. Modern Medicine Journal of China, 2009, 11(3): 43-46.

[32] WU X, WANG Z. Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA[J]. Nucleic Acids Res, 1999, 27: 956-962.

[33] HEGDE M L, ZRA T K, MITRA S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells[J]. Cell research, 2008, 18(1): 27-47.

[34] LI MX, ZHONG ZY, ZHU JW, et al. Identification and characterization of mitochondrial targeting sequence of human apurinic/apyrimidinic endonuclease 1[J]. J Biol Chem, 2010, 285(20): 14871-14881.

[35] VONGSAMPHANH R, FORTIER P K, RAMOTER D. Pir1p mediates translocation of the yeast Apn1p endonuclease into the mitochondria to maintain genomic stability[J]. Mol Cell Biol, 2001, 22: 1647-1655.

[36] BIOTEUX S, GUILLET M. A basic sites in DNA: repair and biological consequences in Saccharomyces cerevisiaes[J]. DNA Repair, 2004, 3: 1-12.

[37] UNK I, HARACSKA L, JOHNSON R E, et al. Apurinic endonuclease activity of yeast Apn2 protein[J]. J Biol Chem, 2000, 275: 22427-22434.

[38] YOU H J, SWANSON R L, HARRINGTON C, et al. Saccharomyces cerevisiaes Ntg1p and Ntg2p: broad specificity N-glycosylases for the repair of oxidative DNA damage in the nucleus and mitochondria[J]. Biochemistry, 1999, 38: 11298-11306.

[39] 张遵真. DNA修复基因OGG1研究进展[J]. 癌变、畸变、突变, 2004, 16(6): 377-382.

    ZHANG Zunzhen. The research progress of OGG1 about DNA repair[J]. Carcinogenesis, Teratogenesis and Mutagenesis, 2004, 16(6): 377-382.

[40] MOREAU S, MORGAN E A, SYMINGTON L S. Overlapping functions of the Saccharomyces cerevisiaes Mre11, Exo1 and Rad27 nucleases in DNA metabolism[J]. Genetics, 2001, 159: 1423-1433.

[41] NIEHRS C. Active DNA demethylation and DNA repair[J]. Differentiation, 2009, 77: 1-11.

[42] KHOBTA A, EPE B. Interactions between DNA damage, repair, and transcription[J]. Mutation Research, 2012, 736: 5-14.

[43] 宋道军, 余汛, 余增亮. 低能离子束对微生物细胞的直接作用和间接作用研究[J]. 高技术通讯, 1999(1): 47-50.

    SONG Daojun, YU Xun, YU Zengliang. Study on the direct and indirect action of N+ ion implantation on D. radiodurans and E.coli[J]. High Technology Letters, 1999(1): 47-50.

[44] GIRARD P M, BOITEUX S. Repair of oxidized DNA bases in the yeast Saccharomyces cerevisiaes[J]. Biochimie, 1997, 79: 559-566.

[45] GASTON S, SOPHIE E P. Prime, repair, restore: the active role of chromatin in the DNA damage response[J]. Molecular Cell, 2012, 46(29): 722-734.

曹国珍, 陆栋, 张苗苗, 王菊芳, 马良, 李欣, 李文建. 重离子辐照酿酒酵母DNA损伤修复途径研究进展[J]. 激光生物学报, 2013, 22(3): 201. CAO Guozhen, LU Dong, ZHANG Miaomiao, WANG Jufang, MA Liang, LI Xin, LI Wenjian. The Research Progress of DNA Damages Repair Pathways Induced by Heavy Ion Irradiation in Saccharomyces cerevisiaes[J]. Acta Laser Biology Sinica, 2013, 22(3): 201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!