激光生物学报, 2013, 22 (3): 201, 网络出版: 2015-07-24   

重离子辐照酿酒酵母DNA损伤修复途径研究进展

The Research Progress of DNA Damages Repair Pathways Induced by Heavy Ion Irradiation in Saccharomyces cerevisiaes
作者单位
1 中国科学院近代物理研究所, 甘肃 兰州 730000
2 兰州大学药学院, 甘肃 兰州 730000
摘要
重离子辐照通过直接和间接作用导致生物体DNA产生损伤, 包括DNA的链断裂、碱基的插入或丢失以及氧化损伤等。DNA损伤直接影响复制、转录和蛋白质合成, 同时还是突变的重要原因, 因此, DNA损伤修复系统尤为重要。在酿酒酵母中, 这些损伤主要是通过同源重组修复(homologous recombination repair, HRR)、碱基错配修复(mismatch repair, MMR)和碱基切除修复(base excision repair, BER)等途径来修复的。作为真核生物研究的模式生物, 对于酿酒酵母DNA损伤修复的HRR、MMR和BER途径研究颇多, 也不断有一些新的成果出现, 特别是对于相关途径的完善和相关蛋白的深化更是研究热点, 在此对近年来有关重离子辐照酿酒酵母DNA损伤修复途径方面的研究做一综述。
Abstract
The DNA of organism can be damaged by the direct and indirect effect of heavy ion irradiation included the chain interruption of DNA, the insertion and missing of base and oxidative damage. The lesions of DNA are detrimental to organism, since they will impact replication, transcription and protein synthesis immediately. At the same time, they also are the significant cause leading to mutation. Therefore, the system of DNA damage repair is distinctly important to organism. In Saccharomyces cerevisiaes, which is used as model organism for the research eukaryotes, these damage are repaired by the pathways of HHR, MMR and BER which have been studied broadly and emerged numerous achievement continually. In particular, both relevant pathways and protein are always a hot research area. In this paper, the recent findings on the approach of DNA damages repair in S.cerevisiae are reviewed.
参考文献

[1] CICCIA A, ELLEDG S J. The DNA damage response: making it safe to play with knives[J]. Mol Cell, 2010, 40: 179-204.

[2] FILIPE M, Flávio A, Bjrn J, et al. Stimulation of DNA repair in Saccharomyces cerevisiaes by Ginkgo biloba leaf extract[J]. Food and Chemical Toxicology, 2011, 49: 1361-1366.

[3] BEGLEY T J, SAMSON L D. Network responses to DNA damaging agents[J]. DNA Repair, 2004, 3: 1123-1132.

[4] ZHANG Min, ZHU Rongrong, ZHANG Mingfeng, et al. High-energy pulse-electron-beam-induced molecular and cellular damage in Saccharomyces cerevisiaes[J]. Research in Microbiology, 2012, 7: 1-12.

[5] SUWAKI N, KLARE K, TARSOUNAS M. RAD51 paralogs: Roles in DNA damage signaling, recombinational repair and tumorigenesis[J]. Semin Cell Dev Biol, 2011, 28(7): 1-12.

[6] SALMON T B, EVERT B A, SONG B W, et al. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiaes[J]. Nucleic Acids Reserch, 2004, 12: 3712-3723.

[7] JACKSON S P. Sensing and repairing DNA double-strand breaks[J]. Carcinogenesis, 2002, 23: 687-696.

[8] 柴国林, 朱卫国. DNA的损伤与修复[J]. 中华肿瘤杂志, 2005, 27(10): 577-580.

    CAI Guolin, ZHU Weiguo. The damage and repair of DNA[J]. Chinese Journal of Oncology, 2005, 27(10): 577-580.

[9] 黄敏, 缪泽鸿. DNA双链断裂损伤修复系统研究进展[J]. 生理科学进展. 2007, 38(4): 295-300.

    HAUNG Min, MIAO Zehong. Repair pathways in response to DNA double-Strand breaks[J]. Progress in Physiological Sciences, 2007, 38(4): 295-300.

[10] 陈汉春, 彭兴华. Rad51同系物与DNA重组修复[J]. 国外医学遗传学分册, 2003, 26(4): 194 -197.

    CHEN Hanchun, PENG Xinghua.The homologue of Rad51 on DNA recombination repair[J]. Foreign Medical Sciences (Section of Genetics), 2003, 26(4): 194 -197.

[11] MANTHEY G M, BAILIS A M. Rad51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces erevisiae[J]. Plos One, 2010, 5(7): 1-12.

[12] 杜利清, 白剑强, 王小春, 等. 同源重组修复蛋白RAD51在骨肉瘤中的表达及其意义[J]. 陕西医学杂志, 2010, 39(11): 1443-1447.

    DU Liqing, BAI Jianqiang, WANG Xiaochun, et al. Expression and effect of RAD51 in osteosarcoma[J]. Shanxi Medical Journal, 2010, 39(11): 1443-1447.

[13] ZHANG Zhanchun. Damage of ionizing radiation and repair gene[J]. Foreign Med Sec Radiat Med, 2004, 28(1): 26-29.

[14] SYMINGTON L S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair[J]. Microbiol Mol Biol R, 2002, 66(4): 630-670.

[15] GENT D C, HOEIJMAKERS J H, KANAAR R. Chromosomal stability and the DNA double-stranded break connection[J]. Nat Rev Genet, 2001, 2(3): 196-206.

[16] WETERINGS E, DIK C, GENT V. Themechanism of non-homologous end joining: A synopsis of synapsis[J]. DNA Repair, 2004, 3: 1425-1435.

[17] 马守成, 赵达. DNA错配修复和临床肿瘤新进展[J]. 基础医学与临床, 2011, 1(12): 1402-1405.

    MA Shoucheng, ZHAO Da. The news for MMH and clinical cancer[J]. Basic & Clinical Medicine, 2011, 1(12): 1402-1405.

[18] SLUPPHAUG G, KAVLI B, KROKAN H E. The interacting pathways for prevention and repair of oxidative DNA damage[J]. Mutat Res, 2003, 531(1): 231-251.

[19] 毕利军, 周亚凤, 张先恩. DNA错配修复与癌症的发生及治疗[J]. 生物物理学报, 2006, 22(1): 1-5.

    BI Lijun, ZHOU Yafeng, ZHANG Xianen. DNA mismatch repair and occurrence and therapy of cancer[J].Acta Biophysica Sinica, 2006, 22(1): 1-5.

[20] KUNKEL T A, ERIE D A. DNA mismatch repair[J]. Annu Rev Biochem, 2005, 74: 681-710.

[21] MARTIN L, COFFEY M, LAWLER M, et al. DNA mismatch repair and the transition to hormone independence in breast and prostate cancer[J]. Cancer Lett, 2010, 291: 142-149.

[22] 刘卓, 吴建新. DNA错配修复系统组成和功能的研究进展. 现代生物医学进展, 2008, 8(6): 1160-1164.

    LIU Zhuo, WU Jianxin. Advance of researches on the composition and function of DNA mismatch repair system[J]. Progress in Modern Biomedicine, 2008, 8(6): 1160-1164.

[23] YUAN Fenghua, LAI Fangfang, GU Liya. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiaes by cell-free nuclear extracts[J]. Method, 2009, 48: 14-18.

[24] STONE J E, PETES T D. Analysis of the proteins involved in the in vivo repair of base-base mismatches and four-base loops formed during meiotic recombination in the Yeast Saccharomyces cerevisiaes[J]. Genetics, 2006, 173: 1223-1239.

[25] ZHANG Y, YUAN F, PRESNELL S R, et al. Reconstitution of 5′-directed human mismatch repair in a purified system[J]. Cell, 2005, 122(5): 693-705.

[26] ANTONY E, KHUBCHANDANI S, CHEN S, et al. Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiaes Msh2-Msh6 mismatch repair protein[J]. DNA Repair, 2006, 5: 153-162.

[27] 钟天映, 毕利军, 张先恩. 错配修复蛋白MutS的新功能位点[J]. 中国科学, 2011, (41)2: 168 -172.

    ZHONG Tianying, BI Lijun, ZHANG Xianen. New functional sites in MutS affect DNA mismatch repair[J]. Science China, 2011, (41)2: 168 -172

[28] 贾若欣, 周峥嵘, 万永杰, 等. 线粒体DNA损伤及其碱基切除修复的研究进展[J].畜牧与兽医, 2011, 43(9): 100-104.

    JIA Ruoxin, ZHOU Zhengrong, WAN Yongjie, et al. Process of mitochondrial DNA damage and its damage repair genes[J].Animal Husbandry & Veterinary Medicine, 2011, 43(9): 100-104.

[29] YU Shanshan, QIN Wei, ZHUANG Guoqiang, et al. Monitoring oxidative stress and DNA damage induced by heavy metals in yeast expressing a redox-sensitive green fluorescent protein[J]. Current Microbiology, 2009, 58(5): 504-510.

[30] COOKE M S, EVANS M D, DIZDAROGLU M, et al. Oxidative DNA damage: mechanisms, mutation and disease[J]. The FASEB Journal, 2003, 17(10): 1195-1201.

[31] 陈月琴, 宋国华, 冯龙, 等. 突变型DNA聚合酶β碱基切除修复活性的分析[J]. 中国现代医药杂志, 2009, 11(3): 43-46.

    CHEN Yueqin, SONG Guohua, FENG Long, et al. Analysis of base excision repair activity in mutant DNA polymerase β[J]. Modern Medicine Journal of China, 2009, 11(3): 43-46.

[32] WU X, WANG Z. Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA[J]. Nucleic Acids Res, 1999, 27: 956-962.

[33] HEGDE M L, ZRA T K, MITRA S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells[J]. Cell research, 2008, 18(1): 27-47.

[34] LI MX, ZHONG ZY, ZHU JW, et al. Identification and characterization of mitochondrial targeting sequence of human apurinic/apyrimidinic endonuclease 1[J]. J Biol Chem, 2010, 285(20): 14871-14881.

[35] VONGSAMPHANH R, FORTIER P K, RAMOTER D. Pir1p mediates translocation of the yeast Apn1p endonuclease into the mitochondria to maintain genomic stability[J]. Mol Cell Biol, 2001, 22: 1647-1655.

[36] BIOTEUX S, GUILLET M. A basic sites in DNA: repair and biological consequences in Saccharomyces cerevisiaes[J]. DNA Repair, 2004, 3: 1-12.

[37] UNK I, HARACSKA L, JOHNSON R E, et al. Apurinic endonuclease activity of yeast Apn2 protein[J]. J Biol Chem, 2000, 275: 22427-22434.

[38] YOU H J, SWANSON R L, HARRINGTON C, et al. Saccharomyces cerevisiaes Ntg1p and Ntg2p: broad specificity N-glycosylases for the repair of oxidative DNA damage in the nucleus and mitochondria[J]. Biochemistry, 1999, 38: 11298-11306.

[39] 张遵真. DNA修复基因OGG1研究进展[J]. 癌变、畸变、突变, 2004, 16(6): 377-382.

    ZHANG Zunzhen. The research progress of OGG1 about DNA repair[J]. Carcinogenesis, Teratogenesis and Mutagenesis, 2004, 16(6): 377-382.

[40] MOREAU S, MORGAN E A, SYMINGTON L S. Overlapping functions of the Saccharomyces cerevisiaes Mre11, Exo1 and Rad27 nucleases in DNA metabolism[J]. Genetics, 2001, 159: 1423-1433.

[41] NIEHRS C. Active DNA demethylation and DNA repair[J]. Differentiation, 2009, 77: 1-11.

[42] KHOBTA A, EPE B. Interactions between DNA damage, repair, and transcription[J]. Mutation Research, 2012, 736: 5-14.

[43] 宋道军, 余汛, 余增亮. 低能离子束对微生物细胞的直接作用和间接作用研究[J]. 高技术通讯, 1999(1): 47-50.

    SONG Daojun, YU Xun, YU Zengliang. Study on the direct and indirect action of N+ ion implantation on D. radiodurans and E.coli[J]. High Technology Letters, 1999(1): 47-50.

[44] GIRARD P M, BOITEUX S. Repair of oxidized DNA bases in the yeast Saccharomyces cerevisiaes[J]. Biochimie, 1997, 79: 559-566.

[45] GASTON S, SOPHIE E P. Prime, repair, restore: the active role of chromatin in the DNA damage response[J]. Molecular Cell, 2012, 46(29): 722-734.

曹国珍, 陆栋, 张苗苗, 王菊芳, 马良, 李欣, 李文建. 重离子辐照酿酒酵母DNA损伤修复途径研究进展[J]. 激光生物学报, 2013, 22(3): 201. CAO Guozhen, LU Dong, ZHANG Miaomiao, WANG Jufang, MA Liang, LI Xin, LI Wenjian. The Research Progress of DNA Damages Repair Pathways Induced by Heavy Ion Irradiation in Saccharomyces cerevisiaes[J]. Acta Laser Biology Sinica, 2013, 22(3): 201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!