光子学报, 2019, 48 (7): 0722001, 网络出版: 2019-07-31  

光学玻璃超声振动维氏压痕中位裂纹的实验研究

Experimental Investigation of Median Crack in Indentation of Optical Glass under Ultrasonic Vibration
作者单位
上海理工大学 机械工程学院, 上海 200093
摘要
为了进一步掌握光学玻璃材料超声振动辅助磨削亚表面损伤机理, 设计常规和超声振动条件下维氏压痕实验, 调查两种情况下K9光学玻璃压痕形貌特征; 采用磁性复合流体抛光方法检测K9光学玻璃压痕区域的中位裂纹深度, 对常规压痕系统中位裂纹模型进行两次系数修正, 获得超声振动条件下的维氏压痕系统中位裂纹深度模型.通过超声振动维氏压痕实验计算静态和动态断裂韧性, 得到两种加载条件的一次修正系数分别为0.08和0.06; 结合检测中位裂纹深度实验结果拟合获得的两种条件下二次修正系数数值接近, 分别为94.75和94.50.结果表明该模型对超声振动和加工条件具有良好的识别度.
Abstract
In order to further grasp the subsurface damage mechanism of ultrasonic vibration-assisted grinding of optical glass materials, the Vickers indentation experiment under non-ultrasonic vibration and ultrasonic vibration conditions was designed to investigate the indentation features of K9 optical glass under two conditions. The magnetic component fluid polishing was used to detect the depth of the median crack in the indentation area of K9 optical glass. The conventional model of median crack of indentation was modified twice to obtain the model of the Vickers median crack depth of the indentation under ultrasonic vibration conditions. The static and dynamic fracture toughness were calculated by experimental data of Vickers indentation under non-ultrasonic vibration and ultrasonic vibration conditions. The first correction coefficients of the two conditions were 0.08 and 0.06 respectively. Combined with the experimental results of the measured median crack depth, the values of the second correction coefficients under the two conditions were close under two conditions, which were 94.75 and 94.50 respectively. The results show that the new median crack depth model has a good recognition of ultrasonic vibration and processing conditions.
参考文献

[1] 周里群, 肖威红, 李玉平. 光学玻璃超精密切削加工裂纹的离散元仿真研究[J]. 机械科学与技术, 2014, 33(4): 527-530.

    ZHOU Li-quan, XIAO Wei-hong, LI Yu-ping. Discrete element simulation forcracks in optical glass ultra-precision machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(4): 527-530.

[2] 龚峰, 李康森, 闫超. 玻璃精密模压成形的研究进展[J]. 光学精密工程, 2018, 26(6): 1380-1391.

    GONG Feng, LI Kang-sen, YAN Chao. Progress on precision glass molding[J]. Optics and Precision Engineering, 2018, 26(6): 1380-1391.

[3] JIANG Chen, CHENG Jin-yi, WU Tao. Theoretical model of brittle material removal fraction related to surface roughness and subsurface damage depth of optical glass during precision grinding [J]. Precision Engineering, 2017, 49: 421-427.

[4] JIANG Chen, XU Ji-peng, WANG Chun-hua. Experimentalinvestigation of subsurface damage of optical glass in precision grinding using a brittle material removal fraction [J]. International Journal of Advanced Manufacturing Technology, 2017, 90: 725-730.

[5] 周明, 黄铖, 赵培轶, 等. 光学玻璃超声振动磨削亚表面损伤的试验研究[J]. 工具技术, 2017, 51(7): 15-19.

    ZHOU Ming, HUANG Cheng, ZHAO Pei-yi, et al. Experimental investigation on subsurface damages in ultrasonic assisted grinding of optical glass[J]. Tool Engineering, 2017, 51(7): 15-19.

[6] 张贝. 高速磨削工艺参数对K9玻璃表面粗糙度的影响规律研究[J]. 组合机床与自动化加工技术, 2018, 2: 124-127.

    ZHANG Bei. Research on the influence law of high speed grinding process parameter on K9 surface roughness[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018, 2: 124-127.

[7] 田爱玲, 王会婷, 党娟娟, 等. 抛光表面的亚表层损伤检测方法研究[J]. 光子学报, 2013, 42(2): 214-218.

    TIAN Ai-ling, WANG Hui-ting, DANG Juan-juan,et al. A novel method for subsurface damage measurement of optical components[J]. Acta Photonica Sinica, 2013, 42(2): 214-218.

[8] 朱永伟, 李信路, 王占奎, 等. 光学硬脆材料固结磨料研磨中的亚表面损伤预测[J]. 光学精密工程, 2017, 25(2): 367-374.

    ZHU Yong-wei,LI Xin-lu, WANG Zhan-gui, et al. Subsurface damage prediction for optical hard-brittle material in fixed abrasive lapping[J]. Optics and Precision Engineering, 2017, 25(2): 367-374.

[9] 高尚, 耿宗超, 吴跃勤, 等. 石英玻璃超精密磨削加工的表面完整性研究[J]. 机械工程学报, 2019, 55(5): 186-195.

    GAO Shang, GENG Zong-chao, WU Yue-qin,et al. Surface integrity of quartz glass induced by ultra-precision grinding[J]. Journal of Mechanical Engineering, 2019, 55(5): 186-195.

[10] MARSHALL D B, LAWN B R, EVANS A G. Elastic/plastic indentation damage in ceramics:the lateral crack system[J]. Journal of the American Ceramic Society, 1982, 65(11): 561-566.

[11] 李伦, 李淑娟, 汤奥斐. 金刚石线锯横向超声振动切割SiC单晶表面粗糙度预测[J]. 机械工程学报, 2016, 52(19): 204-212.

    LI Lun, LI Shu-juan, TANG Ao-fei. Research on the influence law of high speed grinding process parameter on K9 surface roughness[J]. Journal of Mechanical Engineering, 2016, 52(19): 204-212.

[12] 谷岩, 朱文慧, 林洁琼, 等. 碳化硅研抛加工过程中亚表面损伤的研究[J]. 制造技术与机床, 2018, 5: 125-131.

    GU Yan, ZHU Wen-hui, LIN Jie-qiong, et al. Study on subsurface damage in the silicon carbide polishing process[J]. Manufacturing Technology & Machine Tool, 2018, 5: 125-131.

[13] LI Sheng-yi, WANG Zhou, WU Yu-lie. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes[J]. Journal of Materials Processing Technology, 2008, 205(1): 34-41.

[14] 谢春, 汪家林, 唐慧丽. 碳化硼研磨后蓝宝石晶体的亚表面损伤[J]. 光学精密工程, 2017, 25(12): 3070-3078.

    XIE Chun, WANG Jia-lin, TANG Hui-li. Subsurface damage of sapphire crystal after lapping with boron carbide abrasives[J]. Optics and Precision Engineering, 2017, 25(12): 3070-3078.

[15] 张飞虎, 李琛, 孟彬彬, 等. 基于变切深纳米刻划的K9玻璃表面成形特征及去除机制研究[J]. 机械工程学报, 2016, 52(17): 65-71.

    ZHANG Fei-hu, LI Chen, MENG Bin-bin, et al. Investigation of surface deformation characteristic and removal mechanism for K9 glass based on varied cutting-depth nano-sractch[J]. Journal of Mechanical Engineering, 2016, 52(17): 65-71.

[16] 高玉飞, 葛培琪, 李绍杰, 等. 单晶硅线锯切片亚表层损伤层厚度预测与测量[J]. 中国机械工程, 2009, 14: 1731-1735.

    GAO Yu-fei, GE Pei-qi, LI Shao-jie,et al. Prediction and measurement of subsurface damage thickness of silicon wafer in wire saw slicing[J]. China Mechanical Engineering, 2009, 14: 1731-1735.

姜晨, 高睿, 姜臻禹, 郝宇. 光学玻璃超声振动维氏压痕中位裂纹的实验研究[J]. 光子学报, 2019, 48(7): 0722001. JIANG Chen, GAO Rui, JIANG Zhen-yu, HAO yu. Experimental Investigation of Median Crack in Indentation of Optical Glass under Ultrasonic Vibration[J]. ACTA PHOTONICA SINICA, 2019, 48(7): 0722001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!