作者单位
摘要
上海理工大学 机械工程学院, 上海 200093
为了进一步掌握光学玻璃材料超声振动辅助磨削亚表面损伤机理, 设计常规和超声振动条件下维氏压痕实验, 调查两种情况下K9光学玻璃压痕形貌特征; 采用磁性复合流体抛光方法检测K9光学玻璃压痕区域的中位裂纹深度, 对常规压痕系统中位裂纹模型进行两次系数修正, 获得超声振动条件下的维氏压痕系统中位裂纹深度模型.通过超声振动维氏压痕实验计算静态和动态断裂韧性, 得到两种加载条件的一次修正系数分别为0.08和0.06; 结合检测中位裂纹深度实验结果拟合获得的两种条件下二次修正系数数值接近, 分别为94.75和94.50.结果表明该模型对超声振动和加工条件具有良好的识别度.
光学玻璃 中位裂纹 超声振动 维氏压痕 磁性复合流体抛光 Optical glass Median crack Ultrasonic vibration Vickers indentation Magnetic component fluid polishing 
光子学报
2019, 48(7): 0722001
作者单位
摘要
上海理工大学 机械工程学院, 上海 200093
根据光学玻璃元件超精密加工技术的需求,研究自旋转式和行星旋转式磁性复合流体(MCF)抛光的应力分布和材料去除率。首先,设计可实现自旋转和行星旋转抛光装置,搭建抛光实验平台;然后,进行自旋转式和行星旋转式MCF抛光实验,通过自行设计抛光应力分布测试实验分析了两种抛光方式的应力分布规律;最后,通过定点抛光实验,对抛光前后的工件表面轮廓进行检测,计算并分析两种抛光方式的材料去除率。实验结果表明,立式的两种抛光方式,正应力均明显大于剪切应力,工件外侧受到的剪切应力大于中心受到的剪切应力,行星式抛光的材料去除率明显大于自旋转式抛光的材料去除率。
磁性复合流体 抛光 正应力 剪切应力 材料去除率 magnetic composite fluid polishing positive pressure shear stress material removal rate 
光学仪器
2018, 40(5): 78
作者单位
摘要
1 河南大学物理与电子学院, 河南 开封 475004
2 防空兵学院红外与成像制导技术实验室, 河南 郑州 450052
通过总结红外图像增强算法应该具有的基本特征, 在分析了基于 Retinex理论的图像增强算法中的尺度因子的作用后, 提出了基于自适应尺度因子的 Retinex红外图像增强算法, 不仅改善了红外图像的整体效果, 还使动态范围压缩与细节增强的效果达到最优。在仿真验证实验中, 不论从主观评测还是统计数据上, 该方法都被证明了有效性。
红外图像增强 多尺度因子 自适应 Retinex理论 infrared image enhancement muti-scale factor adapted Retinex theory 
红外技术
2016, 38(10): 855
作者单位
摘要
郑州大学信息工程学院,激光与光电信息重点实验室, 郑州 450002
将薄膜太阳能电池的氢化非晶硅吸收层雕刻成一维光栅结构,以此结构来增加氢化非晶硅吸收层对太阳光的捕获能力。利用严格耦合波方法,对电池吸收层吸收效率进行模拟计算,得到光栅结构吸收层在300~700 nm入射波长范围内,吸收效率明显高于平坦吸收层电池的效率,绝对效率最大可提高58.3%。其中吸收层厚度为0.16 μm的光栅电池结构在650~700 nm处有较高的吸收效率,此波段内平均吸收效率可达40%,比平坦结构结构平均吸收效率提高30%以上。最后利用时域有限差分法对吸收层电场分布进行模拟,与平坦结构吸收层的电场分布对比,可以直观的看出入射光在光栅吸收层的吸收增强效应。
太阳能电池 光栅 吸收效率 solar cell grating absorption 
光电子技术
2013, 33(3): 198
作者单位
摘要
1 郑州大学信息工程学院 河南省激光与光电信息技术重点实验室, 河南 郑州450052
2 上海航天技术研究院, 上海201109
设计了一种具有光栅结构砷化镓吸收层的薄膜太阳能电池, 利用严格耦合波方法对矩形光栅和三角形光栅结构砷化镓吸收层在300~900 nm入射波长范围内的吸收效率进行了分析。结果表明: 相比于平坦吸收层, 两种光栅结构在TE和TM偏振光条件下吸收效率均有提高, 峰值吸收率可提高55.9%。并对矩形光栅、三角形光栅结构参数进行了优化设计, 对两种光栅吸收层的角度依赖性做了分析, 得出在填充比和厚度相同的情况下, 正三角形光栅吸收层的角度依赖性最优。最后利用有限元法对入射光在电池吸收层的吸收增强效应进行了理论模拟, 通过与平坦结构吸收层的电场分布对比, 可以直观地看出入射光在光栅结构吸收层的吸收增强效应。该研究结果为制备高效率、高性能太阳能电池结构提供了参考依据。
砷化镓 吸收层 光栅 吸收效率 GaAs absorption layer grating absorption 
发光学报
2013, 34(6): 769

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!