强激光与粒子束, 2015, 27 (2): 024147, 网络出版: 2015-02-15   

微米光栅加速度计的加工与性能研究

Fabrication and characterization of micro-grating accelerometer
冯丽爽 1,2,*姚保寅 1,2刘惟芳 1,2王潇 1,2
作者单位
1 北京航空航天大学 精密光机电一体化技术教育部重点实验室, 北京 100191
2 北京航空航天大学 新型惯性仪表与导航系统技术国防重点学科实验室, 北京 100191
摘要
介绍了一种以微米衍射光栅为敏感元件的微机电加速度计敏感头的加工和性能。硅质量块底部加工有铝反射膜, 透明玻璃基底上制作有金微米光栅, 中间为空气腔, 经硅玻璃阳极键合, 构成敏感头的核心敏感部件。光源透过透明基底, 照射在光栅上, 在反射场内会产生一系列衍射级次, 且各级次衍射光强与外界加速度之间呈函数关系。完成了微米光栅加速度计敏感头的加工, 搭建了实验测试平台, 完成了加速度计的灵敏度以及静电驱动性能测试。为未来新型集成式微米光栅加速度计设计和加工提供参考。
Abstract
The fabrication and characterization of a micro-grating accelerometer with optoelectronic read out is described. The sensor consists of an Al membrane at the bottom of the bulk silicon proof mass and a rigid Au grating on the transparent substrate respectively. Optical detection is performed by measuring the reflected diffraction orders when the grating is illuminated through the quartz. The diffraction-based optical accelerometer is fabricated with silicon-glass anodic bonding procedure. This process is employed extensively in MEMS for its simplification and robustness. Experiment results show that the acceleration sensor has a displacement sensitivity of about 8 mV/nm and an acceleration sensitivity of about 5.6g-1 V. These results provide the reference for design and fabrication of the novel integrated micro-grating accelerometer.
参考文献

[1] Krishnamoorthy U, Olsson III R, Bogart G R, et al. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor[J]. Sensor Actuat A-Phys, 2008, 145/146: 283-290.

[2] Bilaniuk N. Optical microphone transduction techniques[J]. Appl Acoust, 1997, 50(1): 35-63.

[3] Vignola J F, Berthelot Y H, Jarzynski J. Laser detection of ultrasound[J]. J Acoust Soc Amer, 1991, 90: 1275-1286.

[4] CarrD W, Sullivan J P, T A Friedmann. Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis[J]. Opt Letts, 2003, 28(18): 1636-1638.

[5] Yao Baoyin, Feng Lishuang, Wang Xiao, et al. Design of out-of-plane MOEMS accelerometer with sub-wavelength gratings[J]. IEEE Photon Technol Lett, 2014, 26(10): 1027-1030.

[6] Perazzo T, Mao M, Kwon O, et al. Infrared vision uncooled micro-optomechanical camera[J]. Appl Phys Lett, 1999, 74(23): 3567-3569.

[7] Yao Baoyin, Zhou Zhen, Feng Lishuang, et al. Structure design of compact in-plane nano-grating accelerometer[J]. Chin Phys Lett, 2012, 29: 118502.

[8] Yang Shulian, Sheng Cuixia, Wei Qinqin, et al. Liquid-level sensor based on chirped-fiber Bragg gratings[J]. High Power Laser and Particle Beams, 2013, 25(11): 2869-2872.

[9] Lee W, Hall N A, Degertekin F L, et al. A grating-assisted resonant-cavity-enhanced optical displacement detection method for micromachined sensors[J]. Appl Phys Lett, 2004, 85(15): 3032-3034.

[10] Yao Baoyin, Feng Lishuang, Wang Xiao, et al. Micro-grating displacement sensor with integrated electrostatic actuation[J]. Chin Phys Lett, 2014, 31: 078501.

[11] Lee W, Degertekin F L. Rigorous coupled-wave analysis of multilayered grating structures[J]. J Lightw Technol, 2004, 22(10): 2359-2363.

[12] Ferhanoglu O, Toy M F, Urey H. Two-wavelength grating interferometry for MEMS sensors[J]. IEEE Photon Technol Lett, 2007, 19(23): 1895-1897.

[13] Manalis S R, Minne S C, Atalar A, et al. Interdigital cantilevers for atomic force microscopy[J]. Appl Phys Lett, 1996, 69(25): 3944-3946.

[14] Savran C A, Burg T P, Fritz J, et al. Microfabricated mechanical biosensor with inherently differential readout[J]. Appl Phys Lett, 2003, 83(8): 1659-1661.

[15] LohN C, Schmidt M A, Manalis S R. Sub-10 cm3 interferometric accelerometer with nano-g resolution[J]. J Microelectromech Syst, 2002, 11(3): 182-187.

[16] Hall N A, Okandan M, Littrell R. Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation[J]. J Microelectromech Syst, 2008, 17(1): 37-44.

[17] Hall N A, Degertekin F L. Integrated optical interferometric detection method for micromachined capacitive acoustic transducers[J]. Appl Phys Lett, 2002, 80(2): 1027-1030.

[18] Hall N A, Lee W, Degertekin F L. Capacitive micromachined ultrasonic transducers with diffraction-based integrated optical displacement detection[J]. IEEE Trans Ultrason Ferroelect Freq Contr, 2003, 50(11): 1570-1580.

[19] Zhao Shuangshuang, Zhang Juan, Hou Changlun, et al. Optical accelerometer based on grating interferometer with phase modulation technique[J]. Appl Opt, 2012, 51(29): 7005-7010.

[20] Karhade O G, Degertekin F L, Kurfess T R. SOI-based micro scanning grating interferometers: device characterization, control and demonstration of parallel operation[J]. J Micromech Microeng, 2008, 18: 1-8.

[21] Lee W, Hall N A, Z. Zhou, Degertekin F L. Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout[J]. IEEE J Sel Topics Quantum Electron, 2004, 10(3): 643-651.

冯丽爽, 姚保寅, 刘惟芳, 王潇. 微米光栅加速度计的加工与性能研究[J]. 强激光与粒子束, 2015, 27(2): 024147. Feng Lishuang, Yao Baoyin, Liu Weifang, Wang Xiao. Fabrication and characterization of micro-grating accelerometer[J]. High Power Laser and Particle Beams, 2015, 27(2): 024147.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!