光谱学与光谱分析, 2010, 30 (5): 1198, 网络出版: 2011-01-26  

水热法合成KTP晶体的红外光谱研究

The IR Spectroscopic Study of Hydrothermal Synthetic KTP
作者单位
1 中国地质大学地球科学学院, 湖北 武汉430074
2 同济大学海洋地质国家重点实验室, 上海200092
摘要
采用Nicolet 550型傅里叶变换红外光谱仪, 对不同世代水热法合成KTP晶体的不同晶面进行了镜反射法红外光谱测试, 与助熔剂法合成KTP晶体的红外光谱测试结果进行了比较, 并估算了不同世代样品中羟基的浓度。 测试主要针对水热法合成KTP晶体比较发育的(100)、 (011)和(201)晶面, 分基频区和指纹区两个区段进行。 研究结果表明, 水热法合成KTP晶体中OH-的伸缩振动存在明显的方向性特征, 其中[100]方向吸收明显, 并且其频率比助熔剂法合成KTP提高约30 cm-1。 样品中的羟基浓度依世代逐代下降, 羟基的存在抑制了KTP晶体的生长, 提高原料纯度对于提高晶体质量有重要意义。
Abstract
In the present paper, different-generation hydrothermally grown KTP crystals were tested by the Nicolet 550 type FIR spectrometer with the reflective technique. They were studied on different crystal faces. Since the hydrothermally grown KTP crystal usually grows (100), (011) and (201) crystal faces, these faces were tested in different-generation products, and they were tested by two spectral wave bands, 2 000-4 000 and 400-2 000 cm-1. The figures were compared with the flux-melt grown KTP crystal. In addition, making reference to the method of calculation about the consistence of OH- in quartz, the consistence of OH- in different -generation hydrothermally grown KTP crystals was estimated. In the hydrothermal grown KTP crystals, the stretching vibration of OH- shows distinct directivity characteristic. The absorption at [100] direction is obvious and the frequency is about 30 cm-1 higher than the flux-melt grown KTP. Each new generation weakened the consistency of OH-, which restrained the growth of the KTP crystal. Accordingly, increasing the purity of rough materials plays a very important role in improving the quality of the crystals.
参考文献

[1] SHEN De-zhong(沈德忠). Journal of Synthetic Crystals(人工晶体学报), 2001, 30(1): 28.

[2] Zumsteg F C, Bierlin J D, Gier T E. Journal of Appl. Phys., 1976, 47(11): 4980.

[3] Loiseau T, Paulet C, Simon N, et al. Chem. Mater., 2000, 12(5): 1393.

[4] Yanovskii V K, Voronkova V I, Losevskaya T Yu, et al. Crystallography Reports. 2002, 47: S99.

[5] HUO Han-de, LU Fu-hua, QIN Shi-jie, et al(霍汉德, 卢福华, 覃世杰, 等). Superhard Material Engineering(超硬材料工程), 2006, 18(3): 59.

[6] QI Li-jian, YUAN Xin-qiang, CAO Shu-min(亓利剑, 袁心强, 曹姝旻). Journal of Gems & Gemmology(宝石和宝石学杂志), 2005, 7(4): 21.

[7] WU Jin-guang(吴瑾光). Technology and Applications of the Fourier Transform Infrared Spectroscopy(近代傅里叶变换红外光谱技术及应用). Beijing: Science Press(北京: 科学出版社), 1994.

[8] YUAN Xin-qiang, QI Li-jian, ZHENG Nan(袁心强, 亓利剑, 郑南). Journal of Gems & Gemmology(宝石和宝石学杂志), 2005, 7(4): 17.

[9] Farmer V C(V C 法默编著). The Infrared Spectra of Minerals(矿物的红外光谱). Beijing: Science Press(北京: 科学出版社), 1982.

[10] Dodd D M, Fraser D B. Am. Mineralogist, 1967, 52: 149.

[11] Fakhruddin Ahmed, Roger F Belt, Gleb Gashurov. Appl. Phys., 1986, 60(2): 839.

[12] Morris P A, Crawford M K, Jones B. Journal of Appl. Phys., 1992, 72(11): 5371.

谢浩, 裴景成, 亓利剑, 钟增球. 水热法合成KTP晶体的红外光谱研究[J]. 光谱学与光谱分析, 2010, 30(5): 1198. XIE Hao, PEI Jing-cheng, QI Li-jian, ZHONG Zeng-qiu. The IR Spectroscopic Study of Hydrothermal Synthetic KTP[J]. Spectroscopy and Spectral Analysis, 2010, 30(5): 1198.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!