光学 精密工程, 2017, 25 (9): 2532, 网络出版: 2017-10-30   

采用简化Brown模型及改进BFGS法的相机自标定

Self-calibration based on simplified brown non-linear camera model and modified BFGS algorithm
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 空间机器人中心创新研究室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了精确地反映相机的几何成像关系, 本文基于简化的Brown模型和改进的BFGS (Broyden-Fletcher-Goldfarb-Shanno)算法提出了一种相机自标定方法。该方法首先将线性模型 和畸变模型拟合为非线性模型, 通过线性模型的基本矩阵约束非线性模型参数得到约束方 程; 然后, 提出了适用于非线性内参数约束方程的基于新拟牛顿方程的改进 BFGS 算法并求解了方程内参数。利用提出的模型和算法, 该标定方法能够在较少的迭代次数和有噪声条件下保证标定结果的精度和鲁棒性。有、无噪声情况下的收敛性分析和鲁棒性分析显示: 在噪声不大于±3 pixel 的情况下, 迭代10次即能保证重投影误差小于0.4 pixel。通过标定相机内参数并计算重投影误差进行了真实图像实验, 结果表明: 标定精度误差小于0.06%, 重投影误差为0.35 pixel, 验证了提出方法的有效性。 该方法适用于计算机视觉领域中的图像处理, 模式分类和场景分析等。
Abstract
To accurately reflect the geometric imaging relationship of cameras, a self-calibration method was proposed based on simplified Brown nonlinear camera model and improved BFGS (broyden-fletcher-Shanno) algorithm. In this method, the linear camera model and the distortion model were fitted into a nonlinear model, and the nonlinear model parameters were constrained by fundamental matrices of the linear model to obtain a set of nonlinear constraint equations.Then, based on new quasi-Newtonian equation, an improved BFGS algorithm suitable for nonlinear internal parametric constraint equations were presented and the internal parameters of the equation were solved. By using the proposed model and algorithm, the calibration method improves the accuracy and robustness of the calibration results in fewer iteration times and noise conditions. The convergence analysis and robust analysis in with or without noises show that the reprojection error is less than 0.4 pixel when the noise is not greater than ±3 pixel. A real image experiment was performed by calibrating camera parameters and calculating the projection error, and the results show that the calibration precision error is less than 0.06%, and the re-projection error is 0.35 pixel, which verifies the effectiveness of the proposed method. It concluds that the method is applicable to image processing, mode classification and scene analysis in computer vision field.
参考文献

[1] XU D, TAN M, LI Y. Visual Measurement and Control for Robots [M]. National Defense Industry Press, 2016.

[2] DU L G, SHAO H K, CHEN Y J, et al.. An online method for serial robot self-calibration with CMAC and UKF [J].Robotics and Computer-Integrated Manufacturing, 2016, 42: 39-48.

[3] BOUCHRA BOUDINE, SEBASTIEN KRAMM. A flexible technique based on fundamental matrix for cameraself-calibration with variable intrinsic parameters from two views [J]. J. Vis. Commune Image R, 2016, 39: 40-50.

[4] SUN Q, WANGX Y. Camera self-calibration with lens distortion [J]. Optic, 2016, 127: 4506-4513.

[5] ANTHONY W, GERHARD R.Estimating intrinsic camera parameters from the fundamental matrix using an evolutionary approach[J].EURASIP Journal on Applied Signal Processing, 2004(8): 1113-1124.

[6] GUO Q Y, LIU P F. Self-calibration for camera based on genetic algorithm [J].Journal of image and graphics, 2006, 11(11): 1712-1715.

[7] HAO Y T, ZHOU W, ZHONG B T. Self-calibration technique based on Kruppa equations obtaining initial solution by translation motion [J]. Computer Engineering and Applications, 2009, 45(22): 38-40.

[8] 刘书桂, 宋宣晓, 韩振华. 球形靶标中心成像点的高精度定位[J]. 光学 精密工程, 2016, 24(8): 1861-1870.

    LIU SH G, SONG X X, HAN ZH H. High-precision position of projected point of spherical target center[J].Opt. Precision Eng., 2016, 24(8): 1861-1870.(in Chinese)

[9] 杨景豪, 刘巍, 刘阳.双目立体视觉测量系统的标定[J]. 光学 精密工程, 2016, 24(2): 300-308.

    YANG J H, LIU W, LIU Y.Calibration of binocular vision measurement system [J].Opt. Precision Eng., 2016, 24(2): 300-308. (in Chinese)

[10] 曾峦, 翟优, 熊伟. 利用编码标志实现相机自动标定[J]. 光学 精密工程, 2015, 23(10): 695-701.

    ZENG L, ZHAI Y, XIONG W. Automatic camera calibration based on coded marker[J].Opt. Precision Eng., 2015, 23(10): 695-701. (in Chinese)

[11] FENG Y, MINGYUE D. Non-rigid multi-modal medical image registration by combining L-BFGS-B with cat swarm optimization[J]. Information Sciences, 2015, 316: 440-456.

[12] BABAIE-KAFAKI S.A modified BFGS algorithm based on a hybrid secant equation[J]. Sci China Math, 2011, 54(9): 2019-2036, doi: 10.1007/s11425-011-4232-7.

[13] CUI Z, YUAN G, SHENG Z, et al.. A Modified BFGS formula using a trust region model for nonsmooth convex minimizations[J]. PLoS ONE 10(10): e0140606. doi: 10.1371/journal.pone.0140606.

[14] LI L. A New BFGS algorithm using the decomposition matrix ofthe correction matrix to obtain the search directions[J]. Journal of Control Science and Engineering Volume 2015, Article ID 674617, 8 pages.

[15] YUAN X R, HUANG W. A riemannian limited-memory BFGS algorithm for computing the matrix geometric mean[J].Procedia Computer Science Volume 80, 2016: 2147-2157.

[16] PERICARO G A, SANTOS S R, ARIBEIRO A A, et al.. HLRF-BFGS optimization algorithm for structural reliability[J]. Applied Mathematical Modelling, 2015, 39: 2025-2035.

[17] ZHENG ZH CH, HAN S L, ZHENG K. An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System[J]. Sensors and Actuators A, 2015: 232: 39-48.

[18] XU S, SUN X X, LIU, et al..Geometry method of camera self-calibration based on a rectangle[J]. Acta Optical Sinica, 2014, 11(34).

[19] ZHANG Z. Flexible camera calibration by viewing a plane from unknown orientations [C]. International Conference on Computer Vision (ICCV99), 1999, 1: 666-673.

高瞻宇, 顾营迎, 刘宇航, 徐振邦, 吴清文. 采用简化Brown模型及改进BFGS法的相机自标定[J]. 光学 精密工程, 2017, 25(9): 2532. GAO Zhan-yu, GU Ying-ying, LIU Yu-hang, XU Zhen-bang, WU Qing-wen. Self-calibration based on simplified brown non-linear camera model and modified BFGS algorithm[J]. Optics and Precision Engineering, 2017, 25(9): 2532.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!