半导体光电, 2016, 37 (5): 685, 网络出版: 2016-11-18  

CsI光阴极在紫外波段的时间弥散特性

Time Dispersion within the CsI Photocathode in Ultraviolet Region
作者单位
深圳大学 光电子器件与系统(教育部/广东省)重点实验室, 广东 深圳 518060
摘要
为了得到CsI光阴极在紫外波段的时间弥散特性, 使用蒙特卡罗方法对CsI光阴极在紫外光入射情况下的光电发射进行模拟, 研究了当阴极厚度为5~45nm、入射紫外光能量为6.8~8.4eV时CsI光阴极出射电子的时间分布。得到了CsI光阴极的时间弥散与紫外光能量和CsI光阴极厚度的关系, 发现当CsI光阴极厚度小于30nm的时候, 光阴极的时间弥散随紫外光的能量增加而减小, 随光阴极厚度的增加而增加。当CsI光阴极厚度大于30nm的时候, 光阴极的时间弥散趋于稳定, 与紫外光的能量和光阴极的关系较小。
Abstract
A Monte Carlo model was developed and implemented to calculate the characteristics of ultraviolet ray induced electron emission from a CsI photocathode. Time distributions of emitted electrons were investigated with an incident ultraviolet ray energy ranging from 6.8 to 8.4eV and a CsI thickness ranging from 5 to 45nm. Simulation results indicate that the time dispersion of CsI photocathodes decreases with the incident ultraviolet ray energy and increases with the CsI thickness when the CsI thickness is less than 30nm. However, when the CsI thickness is larger than 30nm, the time dispersion of CsI photocathodes has little dependence on the incident ultraviolet ray energy and the CsI thickness.
参考文献

[1] Lingmei K,Alan G J, Timothy C D, et al. Quantum efficiency enhancement in CsI/metal photocathodes[J]. Chem. Phys. Lett., 2015, 621(4): 155-159.

[2] 樊 龙,黎宇坤, 陈 韬, 等. 碘化铯薄膜光阴极的研究进展[J]. 无机材料学报, 2015, 30(3): 225-232.

    Fan Long,Li Yukun, Chen Tao, et al. Recent progress in research on CsI thin film photocathodes[J]. J. Inorganic Materials, 2015, 30(3): 225-232.

[3] 李 晋,胡 昕, 樊 龙, 等. X射线条纹相机阴极制备及其绝对标定[J]. 强激光与粒子束, 2015, 27(8): 082003-1-082003-4.

    Li Jin,Hu Xin, Fan Long, et al. Fabrication and absolute calibration of X-ray streak camera cathode[J]. High Power Laser and Particle Beams, 2015, 27(8): 082003-1-082003-4.

[4] Khan S F,Lee J J, Izumi N, et al. Characterization of the X-ray sensitivity of a streak camera used at the national ignition facility(NIF)[J]. Proc. SPIE, 2013, 8850: 88500D-1-88500D-6.

[5] Acconcia T V,Agocs, A G, Barile, F, et al. VHMPID RICH prototype using pressurized C4F8O radiator gas and VUV photon detector[J]. Nuclear Instruments & Methods In Physics Research Section A, 2014, 767: 50-60.

[6] Baishali G,Radhakrishna, V, Koushal, V, et al. Performance study of a cesium iodide photocathode-based UV photon detector in Ar/CH4 mixture[J]. Photonics Research, 2014,2(3): 92-96.

[7] Zavoisky E K,Fanchenko S D. Image converter high-speed photography with 10-9-10-14sec time resolution[J]. Appl. Opt.,1965, 4(9): 1155-1167.

[8] Spicer W E,Herrera-Gomez A. Modern theory and applications of photocathodes[J]. Proc. SPIE, 1993, 2002: 18-33.

[9] Llacer J,Garwin E L. Electron-photon interaction in alkali halides. I. The transport of secondary electrons with energies between 0.25 and 7.5eV[J]. J. Appl. Phys, 1969,40(7): 2766-2775.

[10] Ashley J C,Ritchie R H, Crawford O H. Energy loss and scattering of subexcitation electrons in SiO2[C]// Proc. the 10th Werner Brandt Conf., 1988:329.

李翔, 顾礼, 宗方轲, 杨勤劳. CsI光阴极在紫外波段的时间弥散特性[J]. 半导体光电, 2016, 37(5): 685. LI Xiang, GU Li, ZONG Fangke, YANG Qinlao. Time Dispersion within the CsI Photocathode in Ultraviolet Region[J]. Semiconductor Optoelectronics, 2016, 37(5): 685.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!