作者单位
摘要
1 深圳大学 1. 高等研究院
2 深圳大学 2. 光电工程学院, 广东 深圳 518060
CsI光阴极在空气中易潮解是导致实际使用时量子产额降低的重要原因。使用扫描探针显微镜观察CsI光阴极在潮解前后的表面形貌变化,发现CsI晶粒在潮解后的直径与高度变大,且CsI薄膜的覆盖率降低。对CsI光阴极潮解后的表面形貌建模,通过蒙特卡罗模拟来研究CsI光阴极的量子产额在潮解前后的变化。模拟结果显示,CsI晶粒的直径和高度变大会导致CsI光阴极的量子产额下降,并且表面形貌变化越大量子产额下降越多。因此,可以认为潮解造成CsI光阴极量子产额下降的重要原因之一是CsI光阴极表面形貌的变化。
CsI光阴极 潮解 量子产额 表面形貌 蒙特卡罗模型 CsI photocathode dehydration quantum yield surface morphology Monte Carlo model 
半导体光电
2019, 40(3): 360
作者单位
摘要
深圳大学 光电子器件与系统(教育部/广东省)重点实验室, 广东 深圳 518060
为了得到X射线条纹相机中CsI光阴极的高能电子份额数据, 通过蒙特卡罗方法建立模型来研究CsI光阴极在X射线照射下的光电发射特性。研究了CsI光阴极厚度为100~1000nm、入射X射线能量为1~30keV时的二次电子(SE)能量分布。模拟结果显示, 入射X射线的能量越高、CsI光阴极的厚度越大, 从CsI光阴极出射的二次电子中高能电子(大于50eV)的份额越高, 在入射X射线能量为30keV、CsI光阴极厚度为1000nm时, 出射电子中的高能电子份额可以达到10.8%。但是当CsI光阴极厚度保持为100nm、而入射X射线能量大于15keV时, 高能电子份额维持在3.4%左右而不再随入射X射线的能量增加而增加。
CsI光阴极 惯性约束聚变 蒙特卡罗模型 X射线条纹相机 高能电子 CsI photocathode inertial confinement fusion Monte Carlo model streak camera fast electron 
半导体光电
2016, 37(6): 899
作者单位
摘要
深圳大学 光电子器件与系统(教育部/广东省)重点实验室, 广东 深圳 518060
为了得到CsI光阴极在紫外波段的时间弥散特性, 使用蒙特卡罗方法对CsI光阴极在紫外光入射情况下的光电发射进行模拟, 研究了当阴极厚度为5~45nm、入射紫外光能量为6.8~8.4eV时CsI光阴极出射电子的时间分布。得到了CsI光阴极的时间弥散与紫外光能量和CsI光阴极厚度的关系, 发现当CsI光阴极厚度小于30nm的时候, 光阴极的时间弥散随紫外光的能量增加而减小, 随光阴极厚度的增加而增加。当CsI光阴极厚度大于30nm的时候, 光阴极的时间弥散趋于稳定, 与紫外光的能量和光阴极的关系较小。
CsI光阴极 时间弥散 蒙特卡罗模型 紫外光 CsI photocathode time dispersion Monte Carlo model ultraviolet ray 
半导体光电
2016, 37(5): 685

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!