太赫兹科学与电子信息学报, 2018, 16 (5): 829, 网络出版: 2019-06-10  

推–推振荡器共用谐振器分析与低相位噪声设计

Common resonator analysis and low phase-noise design in push-push oscillator
作者单位
1 中国工程物理研究院 电子工程研究所,四川 绵阳 621999
2 电子科技大学 电子工程学院,四川 成都 611731
摘要
为实现低相位噪声平面振荡器,对推-推振荡器的共用谐振器与相位噪声优化方法进行了研究。提出一种基于多环式开口谐振环的差分传输线,通过加载一对耦合谐振环的方式实现2个单元振荡器之间的弱耦合,提高了共用谐振器的频率选择特性。基于该结构设计并实现了一种X波段推-推振荡器,在设计中采用一种基于振荡器有源品质因子的相位噪声优化方法。测试结果表明:该振荡器在输出二次谐波9.52?GHz处的相位噪声为-115.48?dBc/Hz@100?kHz,基波抑制度达到-54.55?dBc。
Abstract
In order to obtain low phase noise planar oscillator, the common resonator and phase noise optimization method in push-push oscillators are studied in this paper. Firstly, a differential transmission line loaded by a coupled-pair of multiple split ring resonators is proposed to achieve weak coupling between two sub-oscillators, and the frequency selectivity of common resonator is improved. Then an X-band push-push oscillator utilizing this structure is designed and realized, and a phase noise optimization method based on active quality factor of oscillator is adopted in the design. The measured phase noise is -115.48 dBc/Hz@100 kHz offset at the second harmonic frequency of 9.52 GHz, and the suppression of fundamental frequency component achieves -54.55 dBc.
参考文献

[1] KUROKAWA K. The single-cavity multiple-device oscillator[J]. IEEE Transactions on Microwave Theory and Techniques, 1971,19(10):793-801.

[2] CHANG H C,CAO X,MISHRA U K,et al. Phase noise in coupled oscillators: theory and experiment[J]. IEEE Transactions on Microwave Theory and Techniques, 1997,45(5):604-615.

[3] XIA Q,TANG Z X,ZHANG B. A Ku-band push-push dielectric resonator oscillator[J]. Journal of Electromagnetic Waves and Applications, 2010,24(14):1859-1866.

[4] YOM I B,SHIN D H,OH S H. Push-push voltage controlled dielectric resonator using a LTCC technology[J]. Microwave and Optical Technology Letters, 2007,49(8):1824-1827.

[5] DUSSOPT L,REBEIZ G M. A low phase noise silicon 18 GHz push-push VCO[J]. IEEE Microwave and Wireless Components Letters, 2003,13(1):4-6.

[6] XIAO H,TANAKA T,AIKAWA M. A low phase noise Ku-band push-push oscillator using slot ring resonator[C]// IEEE MTT-S International Microwave Symposium Digest. Fort Worth,TX,USA:IEEE, 2004:695-698.

[7] LEE H W,YOON K C,NAM H,et al. A new K-band push-push VCO using a miniaturized hairpin resonator[J]. Microwave and Optical Technology Letters, 2010,52(3):699-701.

[8] XIAO H,TANAKA T,AIKAWA M. Push-push oscillator with simplified circuit structure[J]. IEE Electronics Letters, 2002,38(24):1545-1547.

[9] SINNESBICHLER F X,GELTINGER H,OLBRICH G R. A 38 GHz push-push oscillator based on 25-GHz fT BJT’s[J]. IEEE Microwave and Guided Wave Letters, 1999,9(4):151-153.

[10] SU P,ZHAO S W,TANG Z X. Ku-band push-push VCO based on substrate integrated waveguide resonator[J]. Microwave Journal, 2013,56(5):166-176.

[11] CHEN Z,HONG W,CHEN J,et al. Design of a push-push and push-pull oscillator based on SIW/SICL technique[J]. IEEE Microwave and Wireless Components Letters, 2014,24(6):397-399.

[12] GINZTON E L. Microwave Q measurement in the presence of coupling losses[J]. IRE Transactions on Microwave Theory and Techniques, 1958,6(4):383-389.

[13] CHOI J,SEO C. Microstrip square open-loop multiple split-ring resonator for low-phase-noise VCO[J]. IEEE Transactions on Microwave Theory and Techniques, 2008,56(12):3245-3252.

[14] OHIRA T,ARAKI K. Active Q-factor and equilibrium stability formulation for sinusoidal oscillators[J]. IEEE Transactions on Circuits and Systems II Express Briefs, 2007,54(9):810-814.

[15] CHEN Z,HONG W,CHEN J X,et al. Low-phase noise oscillator utilizing high-Q active resonator based on substrate integrated waveguide technique[J]. IET Microwave Antennas and Propagation, 2014,8(3):137-144.

李智鹏, 凌源, 钟伟, 鲍景富. 推–推振荡器共用谐振器分析与低相位噪声设计[J]. 太赫兹科学与电子信息学报, 2018, 16(5): 829. LI Zhipeng, LING Yuan, ZHONG Wei, BAO Jingfu. Common resonator analysis and low phase-noise design in push-push oscillator[J]. Journal of terahertz science and electronic information technology, 2018, 16(5): 829.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!