激光与光电子学进展, 2020, 57 (19): 190001, 网络出版: 2020-10-10   

脉冲激光沉积制备一维有序氧化物纳米结构的研究进展 下载: 1415次封面文章特邀综述

Research Progress on Fabrication of One-Dimensional Well-Ordered Oxide Nanostructures by Pulsed Laser Deposition
范丽莎 1,2,3,4张硕文 1,2,3,4张群莉 1,2,3,4姚建华 1,2,3,4,*
作者单位
1 浙江工业大学机械工程学院, 浙江 杭州 310023
2 浙江工业大学激光先进制造研究院, 浙江 杭州 310023
3 高端激光制造装备省部共建协同创新中心, 浙江 杭州 310023
4 高端装备激光再制造浙江省工程研究中心, 浙江 杭州 310023
引用该论文

范丽莎, 张硕文, 张群莉, 姚建华. 脉冲激光沉积制备一维有序氧化物纳米结构的研究进展[J]. 激光与光电子学进展, 2020, 57(19): 190001.

Lisha Fan, Shuowen Zhang, Qunli Zhang, Jianhua Yao. Research Progress on Fabrication of One-Dimensional Well-Ordered Oxide Nanostructures by Pulsed Laser Deposition[J]. Laser & Optoelectronics Progress, 2020, 57(19): 190001.

参考文献

[1] Tawfick S H, Baughman R H, et al. Carbon nanotubes: present and future commercial applications[J]. Science, 2013, 339(6119): 535-539.

[2] Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano Letters, 2006, 6(2): 215-218.

[3] Wong S S, Joselevich E, Woolley A T, et al. Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology[J]. Nature, 1998, 394(6688): 52-55.

[4] Mor G K, Shankar K, Paulose M, et al. Enhanced photocleavage of water using titania nanotube arrays[J]. Nano Letters, 2005, 5(1): 191-195.

[5] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells[J]. Nature Materials, 2005, 4(6): 455-459.

[6] Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35.

[7] Xiang J, Lu W, Hu Y, et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors[J]. Nature, 2006, 441(7092): 489-493.

[8] Huang X H. El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 2006, 128(6): 2115-2120.

[9] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells[J]. Science, 2002, 295(5564): 2425-2427.

[10] Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots to nanorods[J]. Angewandte Chemie International Edition, 2002, 41(7): 1188-1191.

[11] Pan Z W. Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947-1949.

[12] Fang X S, Bando Y, Liao M Y, et al. Single-crystalline ZnS nanobelts as ultraviolet-light sensors[J]. Advanced Materials, 2009, 21(20): 2034-2039.

[13] Wang Z L. Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology[J]. Annual Review of Physical Chemistry, 2004, 55: 159-196.

[14] Zhai TY, Yao JN. One-dimensional nanostructures[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012.

[15] Yip C T, Huang H T, Zhou L M, et al. Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach[J]. Advanced Materials, 2011, 23(47): 5624-5628.

[16] Yang X C, Lu Y, Wang M T, et al. A photonic crystal fiber glucose sensor filled with silver nanowires[J]. Optics Communications, 2016, 359: 279-284.

[17] Pan Z W, Mahurin S M, Dai S, et al. Nanowire array gratings with ZnO combs[J]. Nano Letters, 2005, 5(4): 723-727.

[18] Li Z L, Zheng G X, He P A, et al. All-silicon nanorod-based Dammann gratings[J]. Optics Letters, 2015, 40(18): 4285-4288.

[19] Zhu X X, Li Q L, Ioannou D E, et al. Fabrication, characterization and simulation of high performance Si nanowire-based non-volatile memory cells[J]. Nanotechnology, 2011, 22(25): 254020.

[20] Wei Z, Shen Y, Liu D, et al. Geometry-enhanced ultra-long TiO2 nanobelts in an all-vanadium photoelectrochemical cell for efficient storage of solar energy[J]. Nano Energy, 2016, 26: 200-207.

[21] Yang Z B, Bai S, Yue H W, et al. Germanium anode with lithiated-copper-oxide nanorods as an electronic-conductor for high-performance lithium-ion batteries[J]. Materials Letters, 2014, 136: 107-110.

[22] Yu L M, Zhu Y C, Liu Y L, et al. Ferroelectric perovskite oxide@TiO2 nanorod heterostructures: preparation, characterization, and application as a platform for photoelectrochemical bioanalysis[J]. Analytical Chemistry, 2018, 90(18): 10803-10811.

[23] DasR, Khan GG, Mandal K.Pr and Cr co-doped BiFeO3 nanotubes: an advance multiferroic oxide material[C]∥ 2012Proceedings of 6th Joint European Magnetic Symposia (JEMS), Sep 09-14, 2012. Parma, Italy. 2012, 40: UNSP 15015.

[24] Yin Y W, Burton J D, Kim Y M, et al. Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface[J]. Nature Materials, 2013, 12(5): 397-402.

[25] Walton A S, Gorzny M Ł, Bramble J P, et al. Photoelectric properties of electrodeposited copper(I) oxide nanowires[J]. Journal of the Electrochemical Society, 2009, 156(11): K191-K195.

[26] Morales J R, Amos N, Khizroev S, et al. Magneto-optical Faraday effect in nanocrystalline oxides[J]. Journal of Applied Physics, 2011, 109(9): 093110.

[27] ThekkayilR, JohnH, Gopinath P. Grafting of self assembled polyaniline nanorods on reduced graphene oxide for nonlinear optical application[J]. Synthetic Metals, 2013, 185/186: 38- 44.

[28] Liu Z B, Wang Y, Zhang X L, et al. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes[J]. Applied Physics Letters, 2009, 94(2): 021902.

[29] 李婉珍. 金纳米团簇薄膜的量子化充放电现象研究[D]. 杭州: 浙江大学, 2015.

    Li WZ. Quantised charging of gold nanoclusters film[D]. Hangzhou: Zhejiang University, 2015.

[30] Schmidt M. Kusche R, von Issendorff B, et al. Irregular variations in the melting point of size-selected atomic clusters[J]. Nature, 1998, 393(6682): 238-240.

[31] Schlexer P, Andersen A B, Sebok B, et al. Size-dependence of the melting temperature of individual Au nanoparticles[J]. Particle & Particle Systems Characterization, 2019, 36(3): 1800480.

[32] Choi S H, Wang K L, Leung M S, et al. Fabrication of bismuth nanowires with a silver nanocrystal shadow mask[J]. Journal of Vacuum Science & Technology A, 2000, 18(4): 1326-1328.

[33] Wang J, Gudiksen M S, Duan X, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires[J]. Science, 2001, 293(5534): 1455-1457.

[34] Lee Y, Choi C H, Jang Y T, et al. Tungsten nanowires and their field electron emission properties[J]. Applied Physics Letters, 2002, 81(4): 745-747.

[35] Wang Y W, Wang G Z, Wang S X, et al. Fabrication and magnetic properties of highly ordered Co16Ag84 alloy nanowire array[J]. Applied Physics A, 2002, 74(4): 577-580.

[36] Yan B H, Zhou G, Duan W H, et al. Uniaxial-stress effects on electronic properties of silicon carbide nanowires[J]. Applied Physics Letters, 2006, 89(2): 023104.

[37] Jing L Q, Sun X J, Shang J, et al. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis[J]. Solar Energy Materials and Solar Cells, 2003, 79(2): 133-151.

[38] Li P, Yao X, Gao F, et al. Preparation of aligned Ca3Co2O6 nanorods and their steplike magnetization[J]. Applied Physics Letters, 2007, 91(4): 042505.

[39] Lee H W, Lee K M, Lee S, et al. Ultrafast third-order optical nonlinearities of vertically-aligned ZnO nanorods[J]. Chemical Physics Letters, 2007, 447(1/2/3): 86-90.

[40] Zhang Y X, Li G H, Jin Y X, et al. Hydrothermal synthesis and photoluminescence of TiO2 nanowires[J]. Chemical Physics Letters, 2002, 365(3/4): 300-304.

[41] Liu Z, Li S, Yang Y, et al. Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts[J]. Advanced Materials, 2003, 15(22): 1946-1948.

[42] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science, 1998, 279(5348): 208-211.

[43] Wang X D, Li Z D, Shi J, et al. One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts[J]. Chemical Reviews, 2014, 114(19): 9346-9384.

[44] Wan H, Ruda H E. A study of the growth mechanism of CVD-grown ZnO nanowires[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(10): 1014-1019.

[45] Bhaviripudi S, Mile E, Steiner S A, et al. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts[J]. Journal of the American Chemical Society, 2007, 129(6): 1516-1517.

[46] Horprathum M, Srichaiyaperk T, Samransuksamer B, et al. Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22051-22060.

[47] Horprathum M, Limwichean K, Wisitsoraat A, et al. NO 2-sending properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering[J]. Sensors and Actuators B, 2013, 176: 685-691.

[48] Tseng L T, Luo X, Tan T T, et al. Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods[J]. Nanoscale Research Letters, 2014, 9(1): 1-10.

[49] Fang D, Huang K L, Liu S Q, et al. High density copper nanowire arrays deposition inside ordered titania pores by electrodeposition[J]. Electrochemistry Communications, 2009, 11(4): 901-904.

[50] Liang H W, Liu S, Yu S H. Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates[J]. Advanced Materials, 2010, 22(35): 3925-3937.

[51] Rigout M L, Niu H J, Qin C L, et al. Fabrication and photoluminescence of hyperbranched silicon nanowire networks on silicon substrates by laser-induced forward transfer[J]. Nanotechnology, 2008, 19(24): 245303.

[52] Rahm A, Lorenz M, Nobis T, et al. Pulsed-laser deposition and characterization of ZnO nanowires with regular lateral arrangement[J]. Applied Physics A, 2007, 88(1): 31-34.

[53] Gao X S, Liu L F, Birajdar B, et al. High-density periodically ordered magnetic cobalt ferrite nanodot arrays by template-assisted pulsed laser deposition[J]. Advanced Functional Materials, 2009, 19(21): 3450-3455.

[54] Li L, Zhang X Q, Li L, et al. Magnetoresistance of single-crystalline La0.67Sr0.33MnO3/MgO nanorod arrays[J]. Solid State Communications, 2013, 171: 46-49.

[55] Dai Q L, Chen J J, Lu L Y, et al. Pulsed laser deposition of CdSe quantum dots on Zn2SnO4 nanowires and their photovoltaic applications[J]. Nano Letters, 2012, 12(8): 4187-4193.

[56] Nikov R G, Dikovska A O, Avdeev G V, et al. PLD fabrication of oriented nanowires in magnetic field[J]. Applied Surface Science, 2019, 471: 368-374.

[57] Sun Y, Fuge G M. Ashfold M N R. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods[J]. Chemical Physics Letters, 2004, 396(1/2/3): 21-26.

[58] Casari C S, Giannuzzi C S, Russo V. Carbon-atom wires produced by nanosecond pulsed laser deposition in a background gas[J]. Carbon, 2016, 104: 190-195.

[59] 程勇, 陆益敏, 郭延龙, 等. 脉冲激光沉积功能薄膜的研究进展[J]. 激光与光电子学进展, 2015, 52(12): 120003.

    Cheng Y, Lu Y M, Guo Y L, et al. Development of function films prepared by pulsed laser deposition technology[J]. Laser & Optoelectronics Progress, 2015, 52(12): 120003.

[60] Ashfold M N R, Claeyssens F, Fuge G M, et al. Pulsed laser ablation and deposition of thin films[J]. Chemical Society Reviews, 2004, 33(1): 23-31.

[61] 宣天美, 尹桂林, 葛美英, 等. 纳米ZnO气敏传感器研究进展[J]. 材料导报, 2015, 29(1): 132-136.

    Xuan T M, Yin G L, Ge M Y, et al. Research progress on nano-ZnO gas sensors[J]. Materials Review, 2015, 29(1): 132-136.

[62] 周仕强, 卢清杰, 陈明鹏, 等. 微纳米结构In2O3气敏传感器研究进展[J]. 功能材料与器件学报, 2019, 25(2): 65-76.

    Zhou S Q, Lu Q J, Chen M P, et al. Research progress of micro/nano-structured In2O3 gas sensor[J]. Journal of Functional Materials and Devices, 2019, 25(2): 65-76.

[63] Ristoscu C, Cultrera L, Dima A, et al. SnO2 nanostructured films obtained by pulsed laser ablation deposition[J]. Applied Surface Science, 2005, 247(1/2/3/4): 95-100.

[64] 莫观孔, 刘家辉, 邹卓良, 等. 脉冲激光沉积法制备低阻掺镓氧化锌薄膜及其光电性能[J]. 中国激光, 2019, 46(10): 1003001.

    Mo G K, Liu J H, Zou Z L, et al. Preparation of low-resistivity GZO thin films using pulsed laser deposition and investigation of optoelectronic properties[J]. Chinese Journal of Lasers, 2019, 46(10): 1003001.

[65] 李学磊, 冯煜东, 王志民, 等. Al2O3薄膜的性能、制备与应用[J]. 真空, 2016, 53(3): 16-21.

    Li X L, Feng Y D, Wang Z M, et al. Properties, preparation and application of aluminium oxide thin films[J]. Vacuum, 2016, 53(3): 16-21.

[66] 邢晓, 王文军, 李淑红, 等. 脉冲激光沉积制备TiO2薄膜的性能[J]. 中国激光, 2013, 40(2): 0207001.

    Xing X, Wang W J, Li S H, et al. Properties of TiO2 films deposited by pulsed laser deposition[J]. Chinese Journal of Lasers, 2013, 40(2): 0207001.

[67] Okamoto K, Yamada T, Yasumoto J, et al. Influence of deposition conditions on self-assembled growth of Pb(Zr, Ti)O3 nanorods by pulsed laser deposition at elevated oxygen pressure[J]. Journal of the Ceramic Society of Japan, 2018, 126(5): 276-280.

[68] 童杏林, 罗梦泽, 姜德生, 等. GaN薄膜制备及脉冲激光沉积法的研究进展[J]. 激光杂志, 2006, 27(1): 5-7.

    Tong X L, Luo M Z, Jiang D S, et al. Research development on GaN films grown by laser deposition[J]. Laser Journal, 2006, 27(1): 5-7.

[69] 谢尚昇, 何欢, 符跃春. 脉冲激光沉积AlN薄膜的结构表征和性能研究进展[J]. 材料导报, 2010, 24(11): 45-49.

    Xie S S, He H, Fu Y C. Development of structural characterization and properties of AlN film prepared by pulsed laser deposition[J]. Materials Review, 2010, 24(11): 45-49.

[70] Grigoriev S N, Fominski V Y, Romanov R I, et al. Tribological properties of gradient Mo-Se-Ni-C thin films obtained by pulsed laser deposition in standard and shadow mask configurations[J]. Thin Solid Films, 2014, 556: 35-43.

[71] 梁立容, 魏爱香, 莫忠. 室温脉冲激光沉积法合成Bi3.95Er0.05Ti3O12薄膜及其介电性能研究[J]. 中国激光, 2018, 45(9): 0902002.

    Liang L R, Wei A X, Mo Z. Bi3.95Er0.05Ti3O12 thin films synthesized by pulsed laser deposition technique and their dielectric properties at room temperature[J]. Chinese Journal of Lasers, 2018, 45(9): 0902002.

[72] Garcia-Sanz F J, Mayor M B, Arias J L, et al. Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques[J]. Journal of Materials Science: Materials in Medicine, 1997, 8(12): 861-865.

[73] Clèries L. Fernández-Pradas J M, Morenza J L. Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition[J]. Journal of Biomedical Materials Research, 2000, 49(1): 43-52.

[74] 邓泽超, 刘建东, 王旭, 等. 真空环境中脉冲激光烧蚀制备纳米银晶薄膜的生长特性[J]. 中国激光, 2019, 46(9): 0903003.

    Deng Z C, Liu J D, Wang X, et al. Growth characteristics of Ag nanocrystalline thin films prepared by pulsed laser ablation in vacuum[J]. Chinese Journal of Lasers, 2019, 46(9): 0903003.

[75] Gontad F, Caricato A P, Cesaria M, et al. Decoration of silica nanowires with gold nanoparticles through ultra-short pulsed laser deposition[J]. Applied Surface Science, 2017, 418: 430-436.

[76] Gonzalo J, Perea A, Babonneau D, et al. Competing processes during the production of metal nanoparticles by pulsed laser deposition[J]. Physical Review B, 2005, 71(12): 125420.

[77] Mahjouri-Samani M, Tian M, Puretzky A A, et al. Nonequilibrium synthesis of TiO2 nanoparticle “building blocks” for crystal growth by sequential attachment in pulsed laser deposition[J]. Nano Letters, 2017, 17(8): 4624-4633.

[78] Shkurmanov A, Sturm C, Franke H, et al. Low-temperature PLD-growth of ultrathin ZnO nanowires by using ZnxAl1-xO and ZnxGa1-xO seed layers[J]. Nanoscale Research Letters, 2017, 12: 134.

[79] Li H, Guan L L, Xu Z Q, et al. Synthesis and characterization of amorphous SiO2 nanowires via pulsed laser deposition accompanied by N2 annealing[J]. Applied Surface Science, 2016, 389: 705-712.

[80] Yang Q, Li Y L, Hu Z G, et al. Extended photo-response of ZnO/CdS core/shell nanorods fabricated by hydrothermal reaction and pulsed laser deposition[J]. Optics Express, 2014, 22(7): 8617-8623.

[81] Zhou Z, Nonnenmann S S. Progress in nanoporous templates: beyond anodic aluminum oxide and towards functional complex materials[J]. Materials, 2019, 12(16): 2535.

[82] Lee W, Han H, Lotnyk A, et al. Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch -2 density[J]. Nature Nanotechnology, 2008, 3(7): 402-407.

[83] Li L, Li Y, Gao S, et al. Ordered Co3O4 hierarchical nanorod arrays: tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity[J]. Journal of Materials Chemistry, 2009, 19(44): 8366-8371.

[84] Tian G, Chen D Y, Yao J X, et al. BiFeO3 nanorings synthesized via AAO template-assisted pulsed laser deposition and ion beam etching[J]. RSC Advances, 2017, 7(65): 41210-41216.

[85] Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes[J]. Accounts of Chemical Research, 1999, 32(5): 435-445.

[86] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Applied Physics Letters, 1964, 4(5): 89-90.

[87] Wu Y Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth[J]. Journal of the American Chemical Society, 2001, 123(13): 3165-3166.

[88] Kodambaka S, Tersoff J, Reuter M C, et al. Germanium nanowire growth below the eutectic temperature[J]. Science, 2007, 316(5825): 729-732.

[89] Barth S, Hernandez-Ramirez F, Holmes J D, et al. Synthesis and applications of one-dimensional semiconductors[J]. Progress in Materials Science, 2010, 55(6): 563-627.

[90] Dhungana D S, Hemeryck A, Sartori N, et al. Insight of surface treatments for CMOS compatibility of InAs nanowires[J]. Nano Research, 2019, 12(3): 581-586.

[91] Liu B, Hu Z D, Che Y, et al. Growth of ZnO nanoparticles and nanorods with ultrafast pulsed laser deposition[J]. Applied Physics A, 2008, 93(3): 813-818.

[92] Yan M, Zhang H, Widjaja E J, et al. Self-assembly of well-aligned gallium-doped zinc oxide nanorods[J]. Journal of Applied Physics, 2003, 94(8): 5240-5246.

[93] Choopun S, Tabata H, Kawai T. Self-assembly ZnO nanorods by pulsed laser deposition under argon atmosphere[J]. Journal of Crystal Growth, 2005, 274(1/2): 167-172.

[94] Wang B, Yang Y H, Xu N S, et al. Mechanisms of size-dependent shape evolution of one-dimensional nanostructure growth[J]. Physical Review B, 2006, 74(23): 235305.

[95] Yan Y G, Zhou L X, Zhang J, et al. Synthesis and growth discussion of one-dimensional MgO nanostructures: nanowires, nanobelts, and nanotubes in VLS mechanism[J]. Journal of Physical Chemistry C, 2008, 112(28): 10412-10417.

[96] Park S. Enhancement of hydrogen sensing response of ZnO nanowires for the decoration of WO3 nanoparticles[J]. Materials Letters, 2019, 234: 315-318.

[97] Kaur N, Zappa D, Poli N, et al. Integration of VLS-grown WO3 nanowires into sensing devices for the detection of H2S and O3[J]. ACS Omega, 2019, 4(15): 16336-16343.

[98] Li M K, Wang D Z, Ding S, et al. Synthesis and properties of aligned ZnO microtube arrays[J]. Applied Surface Science, 2007, 253(9): 4161-4165.

[99] Yu K, Zhang Y, Luo L, et al. Growth and optical properties of quadrangular zinc oxide nanorods on copper-filled porous silicon[J]. Applied Physics A, 2004, 79(3): 443-446.

[100] Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature[J]. Applied Physics Letters, 2002, 81(19): 3648-3650.

[101] Gao P X, Ding Y, Wang Z L. Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst[J]. Nano Letters, 2003, 3(9): 1315-1320.

[102] Nobis T, Kaidashev E M, Rahm A, et al. Spatially inhomogeneous impurity distribution in ZnO micropillars[J]. Nano Letters, 2004, 4(5): 797-800.

[103] Lorenz M, Kaidashev E M, Rahm A, et al. MgxZn1-xO(0≤x≤0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition[J]. Applied Physics Letters, 2005, 86(14): 143113.

[104] Marcu A, Yanagida T, Nagashima K, et al. Effect of ablated particle flux on MgO nanowire growth by pulsed laser deposition[J]. Journal of Applied Physics, 2007, 102(1): 016102.

[105] Nagashima K, Yanagida T, Tanaka H, et al. Epitaxial growth of MgO nanowires by pulsed laser deposition[J]. Journal of Applied Physics, 2007, 101(12): 124304.

[106] Yanagida T, Nagashima K, Tanaka H, et al. Mechanism of critical catalyst size effect on MgO nanowire growth by pulsed laser deposition[J]. Journal of Applied Physics, 2008, 104(1): 016101.

[107] Kawakami M, Hartanto A B, Nakata Y, et al. Synthesis of ZnO nanorods by nanoparticle assisted pulsed-laser deposition[J]. Japanese Journal of Applied Physics, 2003, 42: L33-L35.

[108] Senthil Kumar E, Chandran M, Bellarmine F, et al. Formation of one-dimensional ZnO nanowires from screw-dislocation-driven two-dimensional hexagonal stacking on diamond substrate using nanoparticle-assisted pulsed laser deposition[J]. Journal of Physics D, 2014, 47(3): 034016.

[109] Nakamura D, Shimogaki T, Nakao S, et al. Patterned growth of ZnO nanowalls by nanoparticle-assisted pulsed laser deposition[J]. Journal of Physics D, 2014, 47(3): 034014.

[110] Hartanto A B, Ning X, Nakata Y, et al. Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume[J]. Applied Physics A, 2004, 78(3): 299-301.

[111] Karnati P, Haque A. Taufique M F N, et al. A systematic study on the structural and optical properties of vertically aligned zinc oxide nanorods grown by high pressure assisted pulsed laser deposition technique[J]. Nanomaterials, 2018, 8(2): 62.

[112] Sun Y, Fuge G M. Ashfold M N R. Growth mechanisms for ZnO nanorods formed by pulsed laser deposition[J]. Superlattices and Microstructures, 2006, 39(1/2/3/4): 33-40.

[113] Liu Z, Ong C K, Yu T, et al. Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties[J]. Applied Physics Letters, 2006, 88(5): 053110.

[114] Fuge G M. Holmes T M S, Ashfold M N R. Ultrathin aligned ZnO nanorod arrays grown by a novel diffusive pulsed laser deposition method[J]. Chemical Physics Letters, 2009, 479(1/2/3): 125-127.

[115] Tien L C, Pearton S J, Norton D P, et al. Synthesis and characterization of single crystalline SnO2 nanorods by high-pressure pulsed laser deposition[J]. Applied Physics A, 2008, 91(1): 29-32.

[116] Tan S S, Kee Y Y, Wong H Y, et al. Pulsed laser deposition of ITO nanorods in argon and OLED applications[J]. Surface and Coatings Technology, 2013, 231: 98-101.

[117] Lee D, Gao X, Fan L S, et al. Nonequilibrium synthesis of highly porous single-crystalline oxide nanostructures[J]. Advanced Materials Interfaces, 2017, 4(3): 1601034.

[118] Yang Y G, Johnson R A. Wadley H N G. A Monte Carlo simulation of the physical vapor deposition of nickel[J]. Acta Materialia, 1997, 45(4): 1455-1468.

[119] Fan L S, Gao X, Lee D, et al. Kinetically controlled fabrication of single-crystalline TiO2 nanobrush architectures with high energy {001} facets[J]. Advanced Science, 2017, 4(8): 1700045.

[120] Fan L, Gao X, Farmer T O, et al. Vertically aligned single-crystalline CoFe2O4 nanobrush architectures with high magnetization and tailored magnetic anisotropy[J]. Nanomaterials, 2020, 10(3): 472.

[121] Lee D, Gao X, Sun L, et al. Colossal oxygen vacancy formation at a fluorite-bixbyite interface[J]. Nature Communications, 2020, 11(1): 1371.

[122] Asaoka K, Ohno Y, Kishimoto S, et al. Ultranarrow luminescence lines from single quantum dots[J]. Physical Review Letters, 1995, 74(20): 4043-4046.

[123] Grosso D, Boissière C, Smarsly B, et al. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides[J]. Nature Materials, 2004, 3(11): 787-792.

[124] Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4 nanostructures[J]. Science, 2004, 303(5658): 661-663.

[125] Zavaliche F, Zheng H, Mohaddes-Ardabili L, et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures[J]. Nano Letters, 2005, 5(9): 1793-1796.

[126] Zheng H M, Zhan Q, Zavaliche F, et al. Controlling self-assembled perovskite-spinel nanostructures[J]. Nano Letters, 2006, 6(7): 1401-1407.

[127] Teranishi R, Yasunaga S, Kai H, et al. Superconducting properties of ErBCO films with BaMO3 nanorods (M=Zr and Sn) by pulsed laser deposition[J]. Physica C, 2008, 468(15/16/17/18/19/20): 1522-1526.

[128] Ichinose A, Naoe K, Horide T, et al. Microstructures and critical current densities of YBCO films containing structure-controlled BaZrO3 nanorods[J]. Superconductor Science and Technology, 2007, 20(12): 1144-1150.

[129] Kim J H, Zhu K, Yan Y F, et al. Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays[J]. Nano Letters, 2010, 10(10): 4099-4104.

[130] Gonzalez-Chavarri J, Parellada-Monreal L, Castro-Hurtado I, et al. ZnO nanoneedles grown on chip for selective NO2 detection indoors[J]. Sensors and Actuators B, 2018, 255: 1244-1253.

[131] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Advanced Materials, 2003, 15(5): 464-466.

[132] Park J A, Moon J, Lee S J, et al. Fabrication and characterization of ZnO nanofibers by electrospinning[J]. Current Applied Physics, 2009, 9(3): S210-S212.

[133] Choi K S, Chang S P. Effect of structure morphologies on hydrogen gas sensing by ZnO nanotubes[J]. Materials Letters, 2018, 230: 48-52.

[134] Shen G, Bando Y, Liu B, et al. Characterization and field-emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal-evaporation process[J]. Advanced Functional Materials, 2006, 16(3): 410-416.

[135] Kaur M, Kailasaganapathi S, Ramgir N, et al. Gas dependent sensing mechanism in ZnO nanobelt sensor[J]. Applied Surface Science, 2017, 394: 258-266.

[136] Yang J, An S, Park W, et al. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition[J]. Advanced Materials, 2004, 16(18): 1661-1664.

[137] Tian S Q, Yang F, Zeng D W, et al. Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties[J]. Journal of Physical Chemistry C, 2012, 116(19): 10586-10591.

[138] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899.

[139] Soci C, Zhang A, Xiang B, et al. ZnO nanowire UV photodetectors with high internal gain[J]. Nano Letters, 2007, 7(4): 1003-1009.

[140] Zhang X M, Lu M Y, Zhang Y, et al. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film[J]. Advanced Materials, 2009, 21(27): 2767-2770.

[141] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246.

[142] Huang C Y, Ho Y, Hung C, et al. Compact Ga-doped ZnO nanorod thin film for making high-performance transparent resistive switching memory[J]. IEEE Transactions on Electron Devices, 2014, 61(10): 3435-3441.

[143] Zhang Y F, Russo R E, Mao S S. Femtosecond laser assisted growth of ZnO nanowires[J]. Applied Physics Letters, 2005, 87(13): 133115.

[144] Yang Y, Feng Y, Zhu H, et al. Growth, structure, and cathodeluminescence of Eu-doped ZnO nanowires prepared by high-temperature and high-pressure pulsed-laser deposition[J]. Journal of Applied Physics, 2010, 107(5): 053502.

[145] Palani I A, Nakamura D, Okazaki K, et al. Influence of Sb as a catalyst in the growth of ZnO nano wires and nano sheets using nanoparticle assisted pulsed laser deposition (NAPLD)[J]. Materials Science and Engineering B, 2011, 176(18): 1526-1530.

[146] Premkumar T, Manoravi P, Panigrahi B K, et al. Particulate assisted growth of ZnO nanorods and microrods by pulsed laser deposition[J]. Applied Surface Science, 2009, 255(15): 6819-6822.

[147] Liu W, Xu H, Wang L, et al. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties[J]. AIP Advances, 2011, 1(2): 022145.

[148] Tien L C, Pearton S J, Norton D P, et al. Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition[J]. Journal of Materials Science, 2008, 43(21): 6925-6932.

[149] Jo W, Lee J Y, Chun H. Titania nanotubes grown on carbon fibers for photocatalytic decomposition of gas-phase aromatic pollutants[J]. Materials, 2014, 7(3): 1801-1813.

[150] Ping G X, Wang C, Chen D, et al. Fabrication of self-organized TiO2 nanotube arrays for photocatalytic reduction of CO2[J]. Journal of Solid State Electrochemistry, 2013, 17(9): 2503-2510.

[151] AltomareM, PozziM, AllietaM, et al. and O2 photocatalytic production on TiO2 nanotube arrays: effect of the anodization time on structural features and photoactivity[J]. Applied CatalysisB, 2013, 136/137: 81- 88.

[152] Ohsaki Y, Masaki N, Kitamura T, et al. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization[J]. Physical Chemistry Chemical Physics, 2005, 7(24): 4157-4163.

[153] Rao H S, Wu W Q, Liu Y, et al. CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells[J]. Nano Energy, 2014, 8: 1-8.

[154] Fakharuddin A, Di Giacomo F, Palma A L, et al. Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules[J]. ACS Nano, 2015, 9(8): 8420-8429.

[155] Zhang Y Q, Fu Q, Xu Q L, et al. Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries[J]. Nanoscale, 2015, 7(28): 12215-12224.

[156] Jiang S F, Yi B L, Zhang C K, et al. Vertically aligned carbon-coated titanium dioxide nanorod arrays on carbon paper with low platinum for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 276: 80-88.

[157] Li Y, Fang X S, Koshizaki N, et al. Periodic TiO2 nanorod arrays with hexagonal nonclose-packed arrangements: excellent field emitters by parameter optimization[J]. Advanced Functional Materials, 2009, 19(15): 2467-2473.

[158] Nechache R, Nicklaus M, Diffalah N, et al. Pulsed laser deposition growth of rutile TiO2 nanowires on silicon substrates[J]. Applied Surface Science, 2014, 313: 48-52.

[159] Ma D Y, Shi G Y, Wang H Z, et al. Morphology-tailored synthesis of vertically aligned 1D WO3nano-structure films for highly enhanced electrochromic performance[J]. Journal of Materials Chemistry A, 2013, 1(3): 684-691.

[160] Li S T. Samy El-Shall M. Synthesis and characterization of photochromic molybdenum and tungsten oxide nanoparticles[J]. Nanostructured Materials, 1999, 12(1/2/3/4): 215-219.

[161] Shapovalov V I, Lapshin A E, Komlev A E, et al. Crystallization and thermochromism in tungsten oxide films annealed in vacuum[J]. Technical Physics Letters, 2012, 38(6): 555-558.

[162] Solis J L, Saukko S, Kish L, et al. Semiconductor gas sensors based on nanostructured tungsten oxide[J]. Thin Solid Films, 2001, 391(2): 255-260.

[163] Shibuya M, Miyauchi M. Efficient electrochemical reaction in hexagonal WO3 forests with a hierarchical nanostructure[J]. Chemical Physics Letters, 2009, 473(1/2/3): 126-130.

[164] Ou J, Yaacob M H, Campbell J L, et al. H2 sensing performance of optical fiber coated with nano-platelet WO3 film[J]. Sensors and Actuators B, 2012, 166: 1-6.

[165] Shirke Y M, Porel Mukherjee S. Selective synthesis of WO3and W18O49nanostructures: ligand-free pH-dependent morphology-controlled self-assembly of hierarchical architectures from 1D nanostructure and sunlight-driven photocatalytic degradation[J]. CrystEngComm, 2017, 19(15): 2096-2105.

[166] Huang K, Pan Q T, Yang F, et al. Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries[J]. Journal of Physics D, 2008, 41(15): 155417.

[167] Zheng F, Xi C P, Xu J H, et al. Facile preparation of WO3 nano-fibers with super large aspect ratio for high performance supercapacitor[J]. Journal of Alloys and Compounds, 2019, 772: 933-942.

[168] Huang P. Kalyar M M A, Webster R F, et al. Tungsten oxide nanorod growth by pulsed laser deposition: influence of substrate and process conditions[J]. Nanoscale, 2014, 6(22): 13586-13597.

[169] Ponzoni A, Russo V, Bailini A, et al. Structural and gas-sensing characterization of tungsten oxide nanorods and nanoparticles[J]. Sensors and Actuators B, 2011, 153(2): 340-346.

[170] Ahmad M Z, Kang J H, Sadek A Z, et al. Synthesis of WO3 nanorod based thin films for ethanol and H2 sensing[J]. Procedia Engineering, 2012, 47: 358-361.

[171] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures[J]. Science, 2003, 299(5613): 1719-1722.

[172] Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials[J]. Nature, 2006, 442(7104): 759-765.

[173] McCammon C. Perovskite as a possible sink for ferric iron in the lower mantle[J]. Nature, 1997, 387(6634): 694-696.

[174] Cuchiaro J D, McMillan L D, et al. Fatigue-free ferroelectric capacitors with platinum electrodes[J]. Nature, 1995, 374(6523): 627-629.

[175] Tuchiya T, Itoh T, Sasaki G, et al. Preparation and properties of piezoelectric lead zirconate titanate thin films for microsensors and microactuators by sol-gel processing[J]. Journal of the Ceramic Society of Japan, 1996, 104(1207): 159-163.

[176] Zhang Q, Whatmore R W. Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications[J]. Journal of Physics D, 2001, 34(15): 2296.

[177] Li J, Levin I, Slutsker J, et al. Self-assembled multiferroic nanostructures in the CoFe2O4-PbTiO3 system[J]. Applied Physics Letters, 2005, 87(7): 072909.

[178] Tang X, Gao M, Luo H S, et al. Self-assembled patterned CoFe2O4-SrRuO3 electrodes: enhanced functional properties by polar nano-regions reorientation[J]. Journal of the American Ceramic Society, 2020, 103(6): 3726-3731.

[179] Chen Y Z, Liu T H, Chen C Y, et al. Taper PbZr0.2Ti0.8O3 nanowire arrays: from controlled growth by pulsed laser deposition to piezopotential measurements[J]. ACS Nano, 2012, 6(3): 2826-2832.

[180] Nguyen M D, Houwman E P, Dekkers M, et al. Strongly enhanced piezoelectric response in lead zirconate titanate films with vertically-aligned columnar grains[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9849-61.

[181] Xu J, Liu X H, Li Y D. Single crystalline YBa2Cu3O7-δ nanowires from a template-directed sol-gel route[J]. Materials Chemistry and Physics, 2004, 86(2/3): 409-413.

[182] Lai S H, Hsu Y C, Lan M D. Synthesis of Bi2Sr2CaCu2Oy nanowire and its superconductivity[J]. Solid State Communications, 2008, 148(9/10): 452-454.

[183] Hall S. Biomimetic synthesis of high-tc, type-II superconductor nanowires[J]. Advanced Materials, 2006, 18(4): 487-490.

[184] Greenberg Y, Lumelsky Y, Silverstein M S, et al. YBCO nanofibers synthesized by electrospinning a solution of poly(acrylic acid) and metal nitrates[J]. Journal of Materials Science, 2008, 43(5): 1664-1668.

[185] Schnepp Z A C, Wimbush S C, Mann S, et al. Structural evolution of superconductor nanowires in biopolymer gels[J]. Advanced Materials, 2008, 20(9): 1782-1786.

[186] Kargar M, Khoshnevisan B. The study of ultrasonic irradiation effects on solid state powders of HTc superconductor YBa2Cu3O7-x[J]. Modern Physics Letters B, 2016, 30(9): 1650148.

[187] Zhang Y F, Tang Y H, Duan X F, et al. Yttrium-Barium-copper-oxygen nanorods synthesized by laser ablation[J]. Chemical Physics Letters, 2000, 323(1/2): 180-184.

[188] 胡璐瑶, 金卫凤, 黎建麟, 等. 纳秒激光加工中脉冲能量对熔体体积的影响[J]. 表面技术, 2019, 48(8): 48-53.

    Hu L Y, Jin W F, Li J L, et al. Effects of pulse energy on melt volume in nanosecond pulsed laser processing[J]. Surface Technology, 2019, 48(8): 48-53.

[189] 刘奇, 董光能. 纳秒脉冲激光参数及激光路径填充方式对表面织构平坦化的影响[J]. 表面技术, 2019, 48(8): 23-28, 47.

    Liu Q, Dong G N. Effect of nanosecond pulsed laser parameters and texture machining methods on surface texture flattening[J]. Surface Technology, 2019, 48(8): 23-28, 47.

[190] Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics[J]. Nature, 2002, 415(6872): 617-620.

[191] Zhang GQ, TakiguchiM, TatenoK, et al., 2019, 5(2): eaat8896.

[192] Hwang I S, Choi J K, Kim S J, et al. Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO[J]. Sensors and Actuators B, 2009, 142(1): 105-110.

[193] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385): 2013-2016.

[194] Wu J, Ramsay A, Sanchez A, et al. Defect-free self-catalyzed GaAs/GaAsP nanowire quantum dots grown on silicon substrate[J]. Nano Letters, 2016, 16(1): 504-511.

[195] Koga T, Cronin S B, Dresselhaus M S, et al. Experimental proof-of-principle investigation of enhanced Z3DT in (001) oriented Si/Ge superlattices[J]. Applied Physics Letters, 2000, 77(10): 1490-1492.

[196] Wu Y Y, Fan R, Yang P D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires[J]. Nano Letters, 2002, 2(2): 83-86.

[197] Wu S J, Venugopal R, Chen Y T. Laser assisted catalytic growth of ZnS/CdSe core-shell and wire-coil nanowire heterostructures[J]. Journal of the Chinese Chemical Society, 2005, 52(4): 725-732.

[198] Choi J, Ji H, Tambunan O T, et al. Brush-shaped ZnO heteronanorods synthesized using thermal-assisted pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4682-4688.

[199] Hayden O, Greytak A, Bell D. Core-shell nanowire light-emitting diodes[J]. Advanced Materials, 2005, 17(6): 701-704.

[200] Park J A, Moon J, Lee S J, et al. SnO2-ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor[J]. Sensors and Actuators B, 2010, 145(1): 592-595.

[201] Huo B, Hu L, Zhang H, et al. ZnO/Zn0.85Mg0.15O superlattice nanoneedles grown by pulsed laser deposition[J]. Micro & Nano Letters, 2008, 3(4): 117-120.

[202] Qian F, Singh R K, Dutta S K, et al. Laser deposition of diamondlike carbon films at high intensities[J]. Applied Physics Letters, 1995, 67(21): 3120-3122.

[203] Banks P S, Feit M D, Rubenchik A M, et al. Material effects in ultra-short pulse laser drilling of metals[J]. Applied Physics A, 1999, 69(1): S377-S380.

[204] Eliezer S, Eliaz N, Grossman E, et al. Synthesis of nanoparticles with femtosecond laser pulses[J]. Physical Review B, 2004, 69(14): 144119.

[205] Amoruso S, Ausanio G, Bruzzese R, et al. Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum[J]. Physical Review B, 2005, 71(3): 033406.

[206] Liu B, Hu Z D, Che Y, et al. Nanoparticle generation in ultrafast pulsed laser ablation of nickel[J]. Applied Physics Letters, 2007, 90(4): 044103.

范丽莎, 张硕文, 张群莉, 姚建华. 脉冲激光沉积制备一维有序氧化物纳米结构的研究进展[J]. 激光与光电子学进展, 2020, 57(19): 190001. Lisha Fan, Shuowen Zhang, Qunli Zhang, Jianhua Yao. Research Progress on Fabrication of One-Dimensional Well-Ordered Oxide Nanostructures by Pulsed Laser Deposition[J]. Laser & Optoelectronics Progress, 2020, 57(19): 190001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!