光学 精密工程, 2015, 23 (3): 753, 网络出版: 2015-04-20   

超磁致伸缩致动器的小脑神经网络前馈逆补偿-模糊PID控制

CMAC feedforward inverse compensation-fuzzy PID control for giant magnetostrictive actuator
作者单位
1 杭州电子科技大学 机械工程学院, 浙江 杭州 310018
2 杭州浙大精益机电技术工程有限公司, 浙江 杭州 310027
摘要
针对超磁致伸缩致动器(GMA)在精密致动控制中存在的迟滞和位移非线性,提出了小脑神经网络(CMAC)前馈逆补偿结合模糊PID控制的新策略.通过小脑神经网络(CMAC)学习获得超磁致伸缩致动器动态逆模型用于对超磁致伸缩致动器迟滞非线性进行补偿;利用模糊PID控制降低小脑神经网络(CMAC)学习时的误差和抑制扰动,提高系统的跟踪控制性能,从而实现超磁致伸缩致动器的精密致动控制.仿真和实验结果表明:所采用的控制策略有效地消除了迟滞非线性的影响,系统的跟踪误差降低到了5%以下,而位移跟踪误差均方差仅为0.58.此外,这种策略的特点是学习和控制同时进行,控制系统能够适应被控对象动态特性的变化,使系统具有较强的鲁棒性,同时也能够有效地抑制外界的干扰,提升系统的自适应控制性能.
Abstract
Giant magnetostrictive actuators show hysteresis and displacement nonlinear characteristics when they are used in the field of precision actuation control.To overcome the shortcomings,a kind of control strategy combined with the Cerebellar Model Articulation Controller(CMAC)feedforward inverse compensation and the fuzzy PID control was presented.A dynamic inverse model of the GMA was established with the CMAC on-line learning method to compensate the hysteresis nonlinearity of the GMA.A fuzzy PID controller was introduced in GMA to achieve the precision control of the GMA.Using this controller,the learning error of CMAC was decreased,the disturbance was eliminated and the tracking control performance of system was improved.The results came from simulation and experiments show that the control method can effectively reduce the hysteresis error and the tracking error of the system is less than 5% and the displacement tracking error is 0.58(mean square error).In addition,this strategy is characterized by learning and controling at the same time,so that the control system adapts to the changes in the dynamic characteristics of controlled object and has a stronger robustness.Meanwhile,it eliminates external interference effectively and improves its adaptive control performance.
参考文献

[1] 李欣欣,王文,陈戬恒,等.超磁致伸缩致动器的广义最小方差-模糊PID控制方法[J].光学精密工程,2008,16(4):642-649.

    LI X X,WANG W,CHEN J H,et al..Generalized minimum variance-fuzzy PID control method for giant magnetostrictive actuator[J].Opt.Precision Eng.,2008,16(4):642-649.(in Chinese)

[2] 李永.超磁致伸缩致动器驱动系统关键技术研究[D].济南:山东大学,2013.

    LI Y.Research on the Key Technologies of Giant Magnetostrictive Actuator Drive System[D].Jinan:Shandong University,2013.(in Chinese)

[3] OLABI A G,GRUNWALD A.Design and application of magnetostrictive materials[J].Materials and Design,2008,29(2):469-483.

[4] ZHU Z W,ZHANG W D,XU J.Nonlinear dynamic characteristics of giant magnetostrictive sensor[J].Sensors and Materials,2014,26(5):319-324.

[5] 李国康,杨申.超磁致伸缩微位移系统的模糊PID控制方法[J].机械科学与技术,2011,30(6):1025-1027.

    LI G K,YANG SH.Fuzzy-reasoning based self-tuning PID control for ultra-magnetostriction micro-displacement[J].Mechanical Science and Technology for Aerospace Engineering,2011,30(6):1025-1027.(in Chinese)

[6] 李欣欣,王文,陈戬恒,等.Jiles-Atherton模型的超磁致伸缩驱动器磁滞补偿控制[J].光学精密工程,2007,15(10):1558-1563.

    LI X X,WANG W,CHEN J H,et al..Hysteresis compensation of giant magnetostrictive actuator based on Jiles-Atherton model[J].Opt.Precision Eng.,2007,15(10):1558-1563.(in Chinese)

[7] 杨凌霄,陶玉昆,钟颖.超磁致伸缩执行器的P-模糊PID控制[J].计算机仿真,2011,28(1):214-217.

    LANG L X,TAO Y K,ZHONG Y.Control with P-Fuzzy PID for Giant magnetostrictive actuator[J].Computer Simulation,2011,28(1):214-217.(in Chinese)

[8] 王丽梅,董桉吉.超磁致伸缩致动器的基于RBF神经网络整定PID控制[J].组合机床与自动化加工技术,2013(5):76-79.

    WANG L M,DONG A J.Baesd on RBF neural network self-tuning PID control of giant magnetostrictive actuator[J].Modular Machine Tool & Automatic Manufacturing Technique,2013(5):76-79.(in Chinese)

[9] 胡世峰,朱石坚,楼京俊,等.基于CMAC小脑神经网络的超磁致伸缩作动器高精度控制的仿真研究[J].振动与冲击,2009,28(3):68-72.

    HU SH,ZHU SH J,LOU J J,et al..Study on the simulation of the giant magnetostrictive actuator high-precision control based on CMAC neural network[J].Journal of Vibration and Shock,2009,28(3):68-72.(in Chinese)

[10] 王彬,屈稳太,邬义杰,等.超磁致伸缩材料磁滞建模方法国内外研究现状评述[J].功能材料,2013,44(16):2295-2300.

    WANG B,QU W T,WU Y J,et al..Review on hysteretic modeling methods of giant magnetostrictive materials[J].Journal of Functional Materials,2013,44(16):2295-2300.(in Chinese)

[11] 王博文,曹淑瑛,黄文美,等.超磁致伸缩致动器的数学模型和控制技术[J].河北工业大学学报,2013,42(1):06-13.

    WANG B W,CAO SH Y,HUANG W M,et al..Mathematical model and control technology of giant magnetostrictive actuator[J].Journal of Hebei University of Technology,2013,42(1):06-13.(in Chinese)

[12] MENG A H,ZHU J M,KONG M,et al..Modeling of Terfenol-D biased minor hysteresis loops[J].IEEE Transactions on Magnetics,2013,49(1):552-557.

[13] RODRIGUEZ F O,RUBIO J D,GASPAR C R M,et al..Hierarchical fuzzy CMAC control for nonlinear systems[J].Neural Comput & Applic,2013,23(Suppl 1):323-331.

[14] 陈瑾.基于CMAC的网络控制系统控制方法研究[D].哈尔滨:哈尔滨工程大学,2013.

    CHEN J.Research on Control Methods based on CMAC for Network Control Systems[D].Harbin:Harbin Engineering University,2013.(in Chinese)

[15] 王述彦,师宇,冯忠绪.基于模糊PID控制器的控制方法研究[J].机械科学与技术,2011,30(01):166-172.

    WANG SH Y,SHI Y,FENG ZH X.A method for controlling a loading system based on a fuzzy PID controller[J].Mechanical Science and Technology for Aerospace Engineering,2011,30(1):166-172.(in Chinese)

孟爱华, 刘成龙, 陈文艺, 杨剑锋, 李明范. 超磁致伸缩致动器的小脑神经网络前馈逆补偿-模糊PID控制[J]. 光学 精密工程, 2015, 23(3): 753. MENG Ai-hua, LIU Cheng-long, CHEN Wen-yi, YANG Jian-feng, LI Ming-fan. CMAC feedforward inverse compensation-fuzzy PID control for giant magnetostrictive actuator[J]. Optics and Precision Engineering, 2015, 23(3): 753.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!