作者单位
摘要
中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
超强激光加速产生的高能质子束源在基础物理研究、材料科学、生物医疗等领域具有广泛应用前景。基于激光聚变研究中心的SILEX-II装置,开展了高对比度飞秒激光驱动纳米刷靶质子加速实验研究。采用等离子体镜技术进一步提升激光对比度,有效降低了预脉冲对纳米刷靶结构的影响。相比于平面靶,采用纳米刷靶质子截止能量提高到1.5倍,质子束产额增加近一个量级,成功验证了超高功率密度下纳米刷靶对激光离子加速的增强效果,并且有效提升了质子束空间分布的均匀性。研究结果为高品质质子束源的产生和应用提供了技术途径。
纳米刷靶 激光离子加速 等离子体镜 高品质质子束 nanobrush targets laser ion acceleration plasma mirror high-quality proton beam 
强激光与粒子束
2024, 36(1): 101004
作者单位
摘要
1 深圳技术大学 工程物理学院,广东 深圳 518118
2 中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
利用时域有限差分算法(FDTD)对微纳结构靶的光场分布进行仿真模拟,探究微纳结构靶中的光传输机制,分析材料特性和结构参数对光传输特性和光场分布的影响。基于光场分布及演化的仿真模拟结果,对比半导体氧化铝、绝缘体二氧化硅和金属铜三种导电性不同的材料上纳米线和纳米孔阵列微纳结构靶的激光传输特性,分析光传输过程中的光场分布变化。研究结果表明,通过改变氧化铝和二氧化硅纳米孔(线)阵列结构靶中孔洞(纳米线)直径和间距等结构参数,可以实现对微纳结构靶中光传输特性和光场分布的调制,实现光场在介质材料和真空区域间的周期振荡分布,或是以一种稳定形态传输;激光在铜纳米孔阵列中传输时,透光性随孔洞半径的增加而增加。基于光场分布及演化的仿真模拟结果,对比不同材料、不同微纳结构靶的激光传输演化特性,给出物理图像及对应现象规律,根据光场调控需求,给出微纳结构靶设计。
纳米孔阵列结构靶 纳米线阵列结构靶 氧化铝 二氧化硅  光场分布 nanopore array target nanowaire array target Al2O3 SiO2 Cu optical distribution 
强激光与粒子束
2024, 36(3): 031002
作者单位
摘要
1 同济大学 物理科学与工程学院 精密光学工程研究所,先进微结构材料教育部重点实验室,上海 200092;中国工程物理研究院 激光聚变研究中心,等离子体物理重点实验室,四川 绵阳 621900
2 中国工程物理研究院 激光聚变研究中心,等离子体物理重点实验室,四川 绵阳 621900
3 同济大学 物理科学与工程学院 精密光学工程研究所,先进微结构材料教育部重点实验室,上海 200092
传统光栅的基础研究和应用研究进展一直备受关注。然而,高阶衍射污染使传统光栅获得的光谱纯度受到严重影响。为了抑制高阶衍射贡献,人们提出了许多单级或准单级光栅的设计方案,但它们对高阶衍射的抑制效果不可避免地受到加工精度的限制。提出了一种准周期矩形孔阵列光栅,通过优化矩形孔的概率密度分布函数,获得了比以往设计更大的加工误差宽容度。对这种光栅的衍射特性进行了分析研究。理论计算表明,即使孔径相对误差超过20%,光栅也可以完全抑制二阶、三阶和四阶衍射,五阶衍射效率与一阶衍射效率之比小于0.01%,大大降低了对加工精度的要求。
单级衍射光栅 X射线 光谱仪 加工误差宽容度 single-order diffraction grating X-ray spectrometer tolerance of processing errors 
强激光与粒子束
2020, 32(7): 072002
朱斌 1,2,*滕建 1,2吴玉迟 1,2,3范伟 1,2[ ... ]谷渝秋 1,2,3
作者单位
摘要
1 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
2 中国工程物理研究院 等离子体物理重点实验室, 四川 绵阳 621900
3 上海交通大学 IFSA协同创新中心, 上海, 200240
采用超短激光脉冲对一台四通道超高速分幅相机曝光过程进行时间扫描, 测定超高速分幅相机时间响应特性.通过对四个通道的同时测定, 给出最短曝光时间下相机所有通道的时间响应特性曲线.由此曲线得到相机各通道的实际曝光时间、开/关门时间、曝光过程中的响应变化以及四个通道不同的响应特性等诸多信息.通过对相机时间响应特性的测定, 考核相机的实际工作性能与工作状态, 并为实验数据解读提供参考.超短激光脉冲扫描法可以作为高速摄影类设备时间响应特性测定的标准方法.
超短脉冲 扫描方法 分幅相机 时间响应特性 动态诊断 Ultra-short pulse Scanning method Framing camera Time response characteristic Dynamic diagnosis 
光子学报
2018, 47(10): 1011001
作者单位
摘要
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 中国工程物理研究院等离子体物理重点实验室, 四川 绵阳 621900
3 上海交通大学IFSA协同创新中心, 上海 200240
为了获得高能X射线、α射线、γ射线和中子等粒子源的边缘增强图像,提出一种以螺旋波带片编码成像(ZPCI)技术。螺旋波带片同时具备径向希尔伯特变换和菲涅耳波带片聚焦的特点,因此,该技术相当于在采用菲涅耳ZPCI技术获得解码图像的基础上再进行一次径向希尔伯特变换。对该技术产生的边缘增强图像进行模拟计算和实验诊断,结果显示具有可行性。该技术在天文学、核医学和激光惯性约束聚变研究等领域具有广泛的应用前景。
图像处理 编码成像技术 螺旋波带片 边缘增强成像 径向希尔伯特变换 
激光与光电子学进展
2018, 55(3): 031003
作者单位
摘要
中国工程物理研究院 激光聚变研究中心, 等离子体物理重点实验室, 四川 绵阳 621900
康普顿照相是用于压缩靶丸成像、诊断内爆压缩对称性的一种有效技术手段。如何屏蔽成像过程中的背景噪声是康普顿照相技术的重点问题,同时也是一个难点问题。分析了靶环境以及各种背景信号的来源,并提出了相应的屏蔽建议。通过分析可以看到,在中子产额小于1013 sr-1、压缩靶丸中心温度小于5 keV时,通过使用相应的屏蔽措施并采用合适的诊断措施和记录设备,可以把背景噪声降至109 sr-1以下,使康普顿照相中的面密度测量精度达到5%左右。
康普顿照相 背景噪声 高能X射线 内爆 靶丸面密度 Compton Radiography background noise hard X-ray implosion fuel areal density 
强激光与粒子束
2017, 29(11): 112001
作者单位
摘要
1 华中科技大学光电子科学与工程学院, 武汉光电国家实验室, 湖北 武汉430074
2 武汉工程大学理学院, 湖北 武汉430074
研究了不同条件下脉冲放电CO2激光烧蚀平板锡靶产生的等离子体极紫外辐射特性, 设计并建立了一套掠入射极紫外平焦场光栅光谱仪, 结合X射线CCD探测了光源在6.5~16.8 nm波段的时间积分辐射光谱, 得到了极紫外光谱随激光脉宽, 入射脉冲能量及背景气压的变化规律。 实验结果发现: 入射激光脉冲能量在30~600 mJ变化时, 极紫外辐射光谱的强度随辐照激光脉冲能量的增加而增加, 但并不是线性关系, 具有饱和效应, 且产生极紫外辐射的脉冲能量阈值约为30 mJ, 当激光脉冲能量为425 mJ时具有最高的转换效率, 此时中心波长13.5 nm处2%带宽内的转换效率约为1.2%。 激光脉冲半高全宽在50~120 ns范围内变化时, 极紫外辐射光谱的峰值位置均位于13.5 nm, 光谱形状几乎没有什么变化, 但是脉宽从120 ns变到52 ns后, 由于激光功率密度的提高, 极紫外辐射强度也随之增强了约1.6倍。 极紫外光谱的强度随背景气压的增大而迅速下降, 当腔内空气气压为200 Pa时, 极紫外辐射光子几乎被全部吸收, 而当缓冲氦气气压为7×104 Pa时, 仍能够探测到微弱的极紫外辐射信号, 计算表明100 Pa的空气对13.5 nm极紫外光的吸收系数为3.0 m-1, 而100 Pa的He气的吸收系数为0.96 m-1。
激光等离子体 极紫外辐射 CO2激光 缓冲气体 Laser plasma EUV emission CO2 laser Buffer gas 
光谱学与光谱分析
2012, 32(7): 1729
吴涛 1,2,*王新兵 1唐建 1王少义 1[ ... ]卢宏 1
作者单位
摘要
1 华中科技大学光电子科学与工程学院武汉光电国家实验室, 湖北 武汉 430074
2 武汉工程大学理学院, 湖北 武汉 430074
利用CO2激光烧蚀锡靶产生等离子体,当入射到靶面的单个脉冲能量为400 mJ,半峰全宽(FWHM)为75 ns时,使用光谱仪和增强型电荷耦合器件(ICCD)采集了等离子体的时间分辨光谱。在局域热平衡假设下,利用谱线的斯塔克展宽和五条Sn II谱线的相对强度计算并得到了等离子体电子密度、电子温度和辐射谱线强度随时间的变化规律;利用掠入射极端紫外平场光栅光谱仪,结合X射线CCD同时探测了光源在6.5~16.8 nm波段的时间积分极端紫外辐射光谱。实验结果表明:激光点燃等离子体早期的100 ns内有很强的连续谱,此后才能分辨出明显的原子和离子线状谱。在延时0.1~2.0 μs的时间区间内,等离子体中的电子温度和密度分别在2.3~0.5 eV和7.6×1017~1.2×1016 cm-3范围内,均随时间经历了快速下降,然后再较缓慢下降的过程。激光锡等离子体极端紫外不可分辨辐射跃迁光谱峰值中心位于13.5 nm,FWHM为1.1 nm。
光谱学 激光等离子体 电子密度 电子温度 极端紫外辐射 
光学学报
2012, 32(4): 0430002
作者单位
摘要
1 华中科技大学 光电子科学与工程学院 武汉光电国家实验室,武汉 430074
2 武汉工程大学 理学院,武汉 430074
为了研究缓冲气压对激光等离子体参量的影响,利用CO2激光烧蚀Al靶产生等离子体,缓冲气压变化范围为10-4Pa~2 103Pa,激光脉冲能量为180mJ/脉冲,在局域热平衡和光学薄等离子体假设下,采用发射光谱法计算了等离子体的电子温度和电子密度,并研究了缓冲气压对这些参量的影响。结果表明,等离子体的电子温度和电子密度分别在1.05eV~2.47eV与1.95 1016cm-3~10.5 1016cm-3范围内,Al等离子体的电子温度随气压的增大而减少;低缓冲气压时,电子密度随气压增大而减小,当气压达到600Pa时,激光脉冲会击穿空气形成等离子体,电子密度又开始上升,当气压超过3000Pa时,空气等离子体会屏蔽激光脉冲能量,使到达靶面的激光能量急剧下降,Al原子的特征谱线也随之减弱而几乎消失。这一结果对理解缓冲气压对激光与物质相互作用过程的影响是有帮助的。
激光技术 等离子体光谱 电子密度 电子温度 laser technique plasma spectroscopy electron density electron temperature 
激光技术
2011, 35(6): 800

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!