李宝库 1,2柳乐 1,2徐伟 1曾文彬 1[ ... ]蔡盛 1,*
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
探测距离是红外系统应用的重要评价指标,随着制冷型红外探测器的发展,红外系统自身热辐射已成为探测距离提升的重要限制性因素,冷光学设计是抑制自身热辐射的必然选择,因此对冷光学制冷温度指标进行评估和优化成为红外系统设计分析的新问题。文中从红外系统自身热辐射和经典探测距离理论出发,推导了包含系统噪声项的红外系统探测距离计算公式,提出了分布式探测距离的分析方法。以透射式光学系统为例,进行了影响因素灵敏度分析。通过对探测器焦平面进行分区域数据处理,得到了对应探测距离的主要影响表面。在此基础上,分析了在对主要影响表面进行低温处理前后(293.15 K制冷到173.15 K)探测距离的变化。结果表明,探测距离最大提升量达到43.32%,提升效果显著。该方法可为红外系统冷光学设计和评估提供参考。
红外探测系统 自身热辐射 探测距离 主要影响表面 分布式变化 infrared detection system self-thermal radiation detection range main influence surface distributed change 
红外与激光工程
2023, 52(3): 20220417
作者单位
摘要
1 长春工业大学 机电工程学院,吉林 长春 130012
2 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
针对某700 mm×249 mm长条形空间反射镜组件结构设计要求,对反射镜及其支撑结构进行了详细的光机结构设计。首先,从反射镜材料选择、径厚比、支撑方案及轻量化形式等角度出发,对反射镜进行结构设计。通过理论计算得到长条形反射镜的支撑点数。对支撑点位进行了优化,并探索了支撑孔位对反射镜自重变形的影响规律。其次,为满足反射镜组件的力、热环境适应性要求,设计了一种新型柔性支撑结构,并给出了柔性铰链薄弱环节对反射镜面形精度的影响;对支撑结构安装位置深度进行优化,给出反射镜面形精度关于支撑结构安装位置的变化曲线。然后,对反射镜组件进行了有限元分析,自重和5 ℃温升载荷工况下,反射镜面形精度峰谷(Peak Valley,PV)值和均方根(Root Mean Square,RMS)值最大分别达到58.2 nm和12.3 nm;反射镜组件一阶固有频率为259 Hz,低频正弦扫描振动条件下柔性支撑最大应力响应为138 MPa。最后,进行了动力学试验测试。测试结果表明,反射镜组件一阶固有频率为255 Hz,有限元分析误差为1.7%。分析和试验结果表明,反射镜组件结构设计合理,满足设计指标要求。
长条形反射镜 轻量化 有限元分析 动力学试验 rectangular mirror lightweight finite element analysis dynamic test 
红外与激光工程
2021, 50(6): 20200404
作者单位
摘要
1 长春工业大学机电工程学院, 吉林 长春 130012
2 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
3 吉林大学机械与航空航天工程学院, 吉林 长春 130025
在超大口径原位加工与检测中, 目前多采用被动式 Whiffletree液压支撑系统(原位支撑), 而该类支撑单元的轴向刚度存在较大差异性, 会显著影响轻薄型反射镜的面形精度。为解决这一问题, 研究了主动型原位支撑的支点布局、单元刚度和主动校正力的联合优化方法。首先, 针对支撑单元刚度差异, 提出了支撑刚度、支点位置的分级布局优化方法, 获得了支撑系统的初始优化解; 其次, 结合模式定标法和最小二乘法, 进行了支撑点主动力校正, 以获得支撑面形的最终优化解; 最后, 结合具体案例的数字仿真试验, 验证了方法的有效性。结果表明: 对于 4 m弯月型轻薄反射镜, 仅被动支撑下, 分级布局优化后, 60点方案面形精度 RMS值由 150.6 nm减少到 32.9 nm, 78点方案面形精度 RMS值由 45.2 nm减少到 22.6 nm, 优化效果显著; 进一步经主动校正后, 60点方案和 78点方案面形精度 RMS值分别为 14.6 nm和 6.9 nm, 均满足面形精度 RMS值小于 λ/40(λ=632.8 nm)的指标要求; 最终选取 60点轴向支撑方案。通过对支点布局、支撑刚度和校正力进行联合优化, 可以大幅增加原位支撑系统的适用性、灵活性, 降低实施难度。
布局优化 主动光学 液压 Whiffletree 刚度差异 原位支撑 layout optimization active optics hydraulic Whiffletree stiffness difference in-situ support 
光电工程
2020, 47(8): 190551
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
通过对空间大口径单体反射镜支撑技术发展现状及发展趋势的调研, 总结了当前大口径单体空间反射镜支撑技术中较为成熟的技术路线。在此技术路线中, 计量卸荷支撑是必须要攻克的一项核心难题。本文介绍了计量卸荷支撑的概念, 并针对计量卸荷支撑研制过程中的关键技术进行了深入的讨论, 包括支撑点数量、位置及支撑力大小的确定方法, 支撑力执行单元的方案设计以及计量卸荷精度的保证方法等; 通过对计量卸荷支撑研制过程中关键技术的总结, 期望对我国空间大口径单体反射镜的研制提供借鉴意义。
空间望远镜 大口径单体反射镜 计量卸荷支撑 关键技术 space telescope large aperture monolithic space-based mirror metrology mount key technology 
光学 精密工程
2019, 27(10): 2165
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 吉林大学 机械科学与工程学院, 吉林 长春 130025
研制了一套用于4 m SiC反射镜原位检测的静压支撑系统, 以降低超大口径SiC反射镜离线检测的风险, 提高其制造效率。首先, 推导了单元刚度的解析式, 确定了其中关键因素; 然后, 对支撑单元进行抽样测试, 结合解析式预测了支撑群组中单元的工作刚度。最后, 通过密封性测试和反射镜原位检测, 验证了支撑系统的稳定性; 通过有限元模拟, 计算了系统的重力卸载面形精度。结果表明: 5个单元连组时, 单元刚度约为1.9 kN/mm, 刚度值分布在±3%误差区间; 独立单元刚度可高至15 kN/mm; 3种分组单元刚度预测值分别为1.7, 1.1和0.8 kN/mm。支撑系统空载时管路压强变化缓慢, 表明密封性良好; 用该系统支撑4 m反射镜时, 11天内高度绝对变化量小于50 μm, 相对变化量小于20 μm。54个单元刚度随机分布时, 镜面面形高阶残差(RMS)为20 nm。提出的系统基本满足原位检测的稳定性和精度要求。
超大SiC反射镜 原位光学检测 静压支撑系统 刚度差异 面形精度 ultra-large SiC mirror in-situ optical testing hydrostatic support system stiffness difference figure accuracy 
光学 精密工程
2017, 25(10): 2607
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
3 中国科学院大学, 北京 100049
在超大口径光学制造中,镜体背部空间狭小,转台承载能力有限,要求光学制造的支撑结构尽量简单;镜体承受加工载荷且弥漫加工磨料,要求支撑系统对加工载荷和环境不敏感;此外,为便于在线检测,缩短检测周期,还要求支撑系统具有较高的调整精度和稳定性.设计了一种均力型静压支撑系统,先测试了单个支撑的均力性及刚度,预测了压印效应的大小;随后阐述了支撑系统的控制方法;最后实现了系统集成及其图形用户界面(GUI)界面操作.将该系统用于2m SiC 反射镜的光学加工,可将压印效应均方根(RMS)值控制到13.1 nm≈λ/48,满足加工需要;用于立式检测,系统对镜体倾斜和俯仰角可监测到的角度范围为0.34″~0.48°,以及沿Z 方向±5 mm 的运动;对应曲率中心在XY 平面的调节范围dR 最大值50 mm,最小值为10 μm,与电荷耦合器件(CCD)像元尺寸接近,满足立式检测需要.对目前具有重大需求的2~4 m 量级反射镜而言,该系统具有较好的适用性.
光学制造 均力静压支撑 调整精度 超大口径反射镜 在线加工检测 
光学学报
2015, 35(8): 0822001
胡海飞 1,*罗霄 1,2辛宏伟 1戚二辉 1,3[ ... ]张学军 1,2
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
3 中国科学院大学, 北京 100049
为降低支撑控制难度和节约制造成本,同时又保证在线光学加工检测所需的支撑精度,提出超大口径反射镜的支撑布局优化方法。研究支撑状态下的反射镜面形精度,解决面形拟合和优化目标提取的问题;以斜率均方根(SlopeRMS)为目标建立非圆形口径的超薄反射镜加工支点布局优化模型,使其具备自适应有限元分析的功能;针对工程中大量使用的轻量化反射镜,设计出适应其几何变化的支撑转换结构,并展开以面形均方根(RMS)误差为目标的支点位置的优化设计;通过30 m口径望远镜(TMT)第三镜和某2 m口径反射镜的支撑布局优化,验证了所采用方法的效果。算例结果表明,所提方法具有较好的几何适应性,布局优化后支撑系统的精度满足超大口径反射镜的光学制造要求。
光学制造 均力支撑 支撑布局优化 超大口径反射镜 面形精度 光机集成 
光学学报
2014, 34(4): 0422003
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
为了精确计算离轴三反相机的焦距以保证其测绘精度,对经典测绘模型和相关公式进行了必要的修正。首先,重新定义了离轴三反测绘相机的交会角,并对经典焦距计算公式做了修正; 其次,分析了地球曲率对离轴三反测绘相机焦距计算的影响,进一步修正了焦距计算公式。实例计算表明:当要求地面像元分辨率为2 m,在CCD像元尺寸为8 μm,轨道高度为700 km,离轴角为7°条件下,应用经典计算公式得出的斜视相机焦距与应用修正后的计算公式所得出的斜视相机焦距相对偏差达到2.6%,说明对测绘精度影响很大。因此,在采用离轴三反相机进行摄影测量时,斜视相机焦距的计算应考虑离轴角后对经典公式进行必要的修正,而正视相机的焦距计算可以沿用经典计算公式。
离轴三反相机 航天测绘 焦距测量 地球曲率 off-axis Three Mirror Anastigmat(TMA) camera aerospace mapping focal length measurement earth curvature 
光学 精密工程
2012, 20(8): 1754

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!