作者单位
摘要
长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春  130022
为提高1 μm波段超辐射发光二极管的输出特性,对外延结构及J型波导结构参数进行研究,基于研究结果确定外延结构及波导结构参数并对电极窗口制备工艺及单层氧化铪薄膜成膜条件进行了优化。研究表明,缩小波导与限制层AlGaAs材料中Al组分差值利于改善器件光束特性。此外,增加刻蚀深度、脊宽及曲率半径均会使损耗系数减小以提高器件输出功率。基于仿真结果制备出非均匀阱宽大阱深的三量子阱结构器件,前腔面镀制反射率约为0.5%的单层氧化铪薄膜,后腔面蒸镀高反膜,腔长约2 mm,波导曲率半径为21.8 mm,在500 mA连续电流注入下,实现了118.1 mW输出功率和32.5 nm光谱半宽。单层增透膜的设计抑制了器件激射并简化了工艺复杂度,避免了多层增透膜不同材料间的应力问题。
超辐射发光二极管 弯曲波导 曲率半径 损耗系数 输出特性 superluminescent diodes curved waveguide curvature radius loss coefficient output characteristic 
发光学报
2023, 44(12): 2231
作者单位
摘要
长春理工大学物理学院 高功率半导体激光国家重点实验室,吉林 长春 130022
宽条形半导体激光器广泛应用于激光泵浦、激光加工等领域。针对宽条型半导体激光器输出光谱宽、调谐范围小的问题,采用衍射效率分别为28%和55%的反射式衍射光栅作为反馈元件构建了宽条形970 nm波长光栅外腔半导体激光器。研究了Littrow结构激光器参数对其性能(调谐范围、功率、阈值电流、线宽)的影响。实验结果表明,通过结构优化可得到窄线宽可调谐激光输出,适当地提高温度和使用较高衍射效率的光栅可增加激光器调谐范围,并且较高衍射效率的光栅可降低激光器的阈值电流。基于S偏振入射方式的光栅外腔激光器最大可实现27.87 nm的波长调谐范围,光谱线宽压窄至0.2 nm,输出功率可达1.11 W。
半导体激光器 衍射光栅 波长调谐 阈值电流 semiconductor laser diffraction grating wavelength tuning threshold current 
发光学报
2023, 44(4): 664
作者单位
摘要
长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春 130022
具有高功率及高亮度激光特性的锥形半导体激光器在激光加工、自由空间通信、医疗等领域具有广泛的应用前景。本文基于广角差分光束传播法(WA-FD-BPM), 对980 nm锥形半导体激光器进行了仿真模拟, 详细分析了不同结构参数(脊形区刻蚀深度、锥形角度、不同脊形区/锥形区长度比、锥形区刻蚀深度、前腔面反射率)对器件光束质量和P-I-V特性的影响。分析认为, 锥形区波导的几何损耗是导致器件斜率效率降低的主要因素, 光泵浦效应是影响锥形激光器光束质量变差的重要因素, 可通过降低器件的前腔面反射率来改善光束质量。研究结果可为锥形激光器的性能优化提供参考。
锥形半导体激光器 广角差分光束传播法 光束质量 光场分布 tapered semiconductor laser wide-angle differential beam propagation beam quality optical field distribution 
发光学报
2022, 43(2): 275
作者单位
摘要
国防科学技术大学 光电科学与工程学院,长沙 410073
光纤光栅耦合器(FGC)具有光纤光栅良好的波长选择特性和光纤耦合器的多端口特点,易于实现全光纤的光波分插复用。光纤光栅耦合器主要有4种结构:基于M-Z干涉仪的分离型、基于100%耦合器的非对称型、基于0耦合器的非对称型和基于100%耦合器的对称型。着重介绍对称结构光纤光栅耦合器的结构、工作原理和研究现状。提出了测试方案,并探讨了这种器件在大规模波分复用光纤传感器阵列中的应用。
光纤光学 光纤光栅耦合器 光分插复用器 波分复用 fiber optics fiber grating coupler OADM WDM 
应用光学
2006, 27(2): 0133
作者单位
摘要
北京理工大学光电工程系,北京,100081
根据波前径向斜率测量原理,提出一种利用五棱镜扫描方法实现了新型自基准哈特曼波前传感器,其突出优点和特点是毋需任何外部信标或标准大平面反射镜提供工作基准.理论分析和实验结果表明,该传感器波前传感灵敏度与干涉仪相当,而对工作环境和光源并无苛刻要求,可用于天基主动光学系统、地基天文望远镜和大口径平行光管等的装校检验.
波前径向斜率 泽尼克多项式 哈特曼波前传感器 主动光学 
光电工程
2004, 31(6): 1

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!