作者单位
摘要
1 南昌大学资源环境与化工学院, 江西 南昌 330031
2 南昌大学鄱阳湖环境与资源利用教育部重点实验室,江西 南昌 330031
3 东南大学能源与环境学院,江苏 南京 210096
差分吸收光谱(DOAS)技术能够精确实时地监测烟气成分的浓度,是从源头上控制烟气污染物排放的有效手段。在DOAS系统中,光源强度变化是影响测量长期可靠性的重要因素。针对这一问题,提出一个新的光强免校准的DOAS反演算法。该算法利用邻域宽带截面对气体特征吸收的窄带截面进行归一化,从而获得不受光源强度变化影响的等效吸收强度参数αeq(λk),通过比较该参数的测量值与标准截面的计算值,进而可以推算出气体浓度。与传统算法相比,该算法不需要进行多项式拟合、信号滤波等复杂计算,更便于硬件实现。搭建测量系统,用氮气与高浓度NO标气制备不同浓度NO,以NO测量数据为例,结果表明,NO的特征吸收峰只出现在195.5 nm(吸收峰1)、204.7 nm(吸收峰2)、214.8 nm(吸收峰3)、226.2 nm(吸收峰4)等4个位置,且该4个吸收峰的半高全宽均为1 nm左右。采用该算法,特征吸收峰4(226.2 nm)的线性回归决定系数R2达到了0.998 17,验证了新算法的可行性。
差分吸收光谱 反演算法 一氧化氮 免校准 differential absorption spectroscopy inversion algorithm nitric oxide calibration free 
应用激光
2022, 42(4): 140
潘屹峰 1田鑫 1,2谢品华 2,3,4,*李昂 2[ ... ]王子杰 1
作者单位
摘要
1 安徽大学物质科学与信息技术研究院安徽省信息材料与智能传感实验室,安徽 合肥 230601
2 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室,安徽 合肥 230031
3 中国科学院区域大气环境研究卓越创新中心,福建 厦门 361021
4 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
提出一种基于卷积神经网络(CNN)和支持向量回归机(SVR)的多轴差分光学吸收光谱(MAX-DOAS)对流层NO2垂直分布预测方法。将2019年南京站点采集的原始MAX-DOAS数据通过QDOAS软件拟合获取O4和NO2差分斜柱浓度,结合基于最优估算的气溶胶和痕量气体廓线反演算法——PriAM算法反演了对流层NO2廓线,并将其作为预测模型的输出。此外,通过平均影响值方法进行预测模型输入变量的选择,确定了MAX-DOAS数据、温度、气溶胶光学厚度和低云覆盖率为模型的最佳输入变量。通过实验优化网络结构和参数,最终建立预测模型在测试集与PriAM的平均百分比误差仅为9.14%,与单独建立的CNN、SVR、反向传播模型相比,平均百分比误差分别降低了8.22%、6.00%、32.28%。因此,CNN-SVR能够利用MAX-DOAS数据对对流层NO2廓线进行有效预测。
大气光学 卷积神经网络 支持向量回归机 多轴差分吸收光谱 对流层NO2廓线 
光学学报
2022, 42(24): 2401001
曹子昊 1,2,*曾议 2鲁晓峰 1,2廖捷 2,3[ ... ]奚亮 2,3
作者单位
摘要
1 合肥学院生物食品与环境学院, 安徽 合肥 230601
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 中国科学技术大学, 安徽 合肥 230026
成像差分吸收光谱技术 (IDOAS) 能够显示污染物的空间分布, 目前已成功运用于地基扫描、机载与星载等多个平台, 为环境监测及治理提供了有力支撑, 其中地基 IDOAS 主要运用于对某一污染源的探测。分析了成像系统基于“推扫”方式的工作原理, 并将此技术应用于城市大气边界层污染物分布的探测。为更高效使用差分吸收光谱技术 (DOAS) 反演各种痕量气体成分, 更精确地分析污染气体的时空分布特征, 对 QDoas 软件进行了源码级分析和优化。在 Windows 平台上, 使用 C++ 和 QT 对 QDoas 代码进行重组, 通过重新提取、整合、改写与优化代码, 实现了更快速便捷的反演功能模块。为检验模块的反演效果, 以大气中常见的污染物 NO2 和 SO2 为例, 于 2019 年 11 月 6 日在铜陵富鑫钢铁厂开展了现场观测实验。使用新编软件对观测数据进行数据反演后成功获得污染气体的二维分布信息图, 证实了该软件在实际大气环境监测中的适用性。
差分吸收光谱技术 数据反演 二维分布成像 软件研发 differential absorption spectroscopy data inversion two-dimensional distribution imaging software development 
大气与环境光学学报
2022, 17(2): 249
张强 1,2谢品华 1,2,3,*徐晋 2,**李昂 2[ ... ]刘文清 1,2
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
2 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
3 中国科学院城市环境研究所区域大气环境研究卓越创新中心, 福建 厦门 361021
基于大气污染物二维分布遥测系统,开展了被动成像差分吸收光谱技术和图像优化算法相结合的大气污染物二维分布遥测研究。将紫外光谱和可视化图像的双通道系统相结合,实现了污染物浓度信息与可视化图像的精确匹配。针对复杂背景下污染物的数据处理问题,尤其是受浓烟、障碍物遮挡等情况下的数据缺失问题,对观测值进行筛选和处理,再结合烟羽扩散模型和曲面三次样条插值算法对整个区域内的浓度信息进行优化,从而快速获得高空间分辨的污染物二维分布图像信息。
光谱学 差分吸收光谱技术 紫外光谱成像遥测 二维分布 高斯烟羽扩散模型 
光学学报
2020, 40(9): 0930002
吴子扬 1,2,*谢品华 1,2,3徐晋 2李昂 2[ ... ]田鑫 1,2
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
2 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 中国科学院区域大气环境研究卓越创新中心, 福建 厦门 361021
近年来, 中国经济发展迅速, 工业化程度越来越高, 大气环境污染问题加剧, 严重影响人民的日常生活, 因此对大气污染物的实时监测研究尤为重要。 城市边界层大气中各类污染源排放的相互作用, 使得其污染问题复杂多变, 特别是在重污染过程中污染物在大气中的垂直分布和变化情况问题。 成像差分吸收光谱(I-DOAS)技术用于对污染物空间分布的探测, 国内外对该技术的研究主要基于地基扫描、 机载和星载平台, 因其具有长距离、 多组分、 高分辨同时连续实时观测的特点, 观测范围可从小尺度逐渐向大区域拓展, 可为分析大气环境现状提供重要数据支撑。 地基成像差分吸收光谱技术一般用于对某一污染源的探测, 主要研究其对城市大气边界层污染物分布的探测方法, 其中介绍了基于比尔-朗伯定律的差分吸收光谱(DOAS)原理, 分析了基于“推扫”方式的成像系统的成像原理, 并且以大气中常见污染物NO2为例, 2018年6月12日在合肥市科学岛开展对边界层大气NO2的成像遥测实验, 将多芯光纤束前端与紫外镜头耦合, 后端连接光谱仪狭缝, 紫外镜头搭载于二维转台电机上, 设置二维旋转电机合适的仰角, 水平方向上从0°旋转至90°, 观测区域中主要包括郊区, 电厂区和城市区三个典型区域。 选择天顶太阳光谱作为参考谱, 将测量光谱、 参考谱进行相应多通道光谱合并及提取, 每采集一次可获得相对应的38条光谱。 使用DOAS反演方法对所有测量光谱进行数据反演, 得到38×90组NO2的差分斜柱浓度(DSCD), 并根据观测角度的几何模型, 将浓度信息与空间维上的像元相匹配, 按照扫描方向进行依次插值重构, 扣除复杂背景后, 获得合肥市边界层NO2差分斜柱浓度的二维分布图像, 并且与当天同时进行实验的MAX-DOAS观测数据作对比, 两者在郊区、 电厂区和城市区的相关系数分别为0.86, 0.87和0.83, 结果表明该系统能够有效获取城市边界层大气污染物浓度分布信息。
差分吸收光谱 城市边界层 二氧化氮 二维分布成像 Differential absorption spectroscopy Urban boundary layer Nitrogen dioxide Two-dimensional distribution imaging 
光谱学与光谱分析
2020, 40(3): 720
黄良坤 1,2,*温泉 1,2,**温志渝 1,2庾繁 1,2[ ... ]谢瑛珂 1,2
作者单位
摘要
1 重庆大学新型微纳器件与系统技术国防重点学科实验室, 重庆 400044
2 重庆大学微系统研究中心, 重庆 400044
针对微型紫外光谱仪应用设计要求,开展了紫外光谱仪系统研究,完成了IV型光学系统设计。研制出在线实时分析的微型紫外光谱仪,对样机主要参数的测试表明:其工作波长为200~400 nm,分辨率达0.31 nm,波长准确性为±0.1 nm,信噪比为507∶1。通过12 h系统稳定性测试,结果表明该样机光谱波动小于0.47%,达到了光谱仪长期工作的稳定性要求。在25 ℃的实验条件下通过SO2气体对光谱仪性能进行测试,基于差分吸收光谱技术理论,完成了标准气体的差分吸收截面计算。通过连续24 h对质量浓度为20~100 mg/m 3的SO2进行测试,结果表明光谱仪测试数据反演质量浓度的波动性小于1%,线性误差小于0.6%,最大示值误差为-0.56 mg/m 3。
光谱学 紫外光谱仪 IV型光学系统设计 差分吸收光谱技术 SO2 
激光与光电子学进展
2020, 57(5): 053003
作者单位
摘要
河北省机电一体化中试基地, 河北 石家庄 050000
实际烟气测量中, 容易受烟气内多种组分和尘以及介质不均匀、瑞利散射、米散射等因素的影响, 应用傅里叶变换寻求信号的频率特性, 去除噪声等干扰。提出一种新的差分吸收光谱法, 将获取的差分吸收光谱进行两次傅里叶变换, 一次傅里叶变换去除噪声干扰的影响; 二次傅里叶变换利用对应的特征频率幅值与浓度的关系, 建立浓度反演方程, 由气体差分吸收光谱经两次傅里叶变换后的特征幅值直接求出气体浓度。新的差分吸收光谱法完全摆脱了扣除暗电流的差分吸收光谱技术分析过程, 减少了差分吸收光谱分析和气体浓度反演过程, 有利于提高浓度反演精度。
差分吸收光谱技术 傅里叶变换 噪声 浓度反演 differential absorption spectroscopy fourier transform noise concentration inversion 
光学技术
2018, 44(3): 376
作者单位
摘要
1 重庆大学 光电技术及系统教育部重点实验室, 重庆 400044
2 重庆川仪自动化股份有限公司 技术中心, 重庆 401121
为了实时监测工业烟气中SO2的排放, 设计了一种基于差分吸收光谱技术的SO2浓度分析系统。该系统采用差分吸收光谱技术原理, 在深入研究差分吸收光谱数据处理方法的基础上, 在实验室状态下获取了与仪器分辨率相匹配的SO2标准吸收截面, 采用光路反射设计和透紫石英镜片, 改进了气体池结构。结果表明, 该系统的实时测量浓度值与标准浓度值有较好的一致性, 能够满足对SO2气体排放的高精度实时监测要求。
光谱学 吸收光谱 差分吸收光谱 标准吸收截面 spectroscopy absorption spectroscopy differential absorption spectroscopy standard absorption cross section 
激光技术
2016, 40(5): 722

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!