作者单位
摘要
1 上海大学 材料科学与工程学院, 上海 200444
2 桂林电子科技大学 材料科学与工程学院, 广西 桂林 541004
通过将玻璃粉体与发射波长为535~550 nm的黄绿色和660 nm的红色荧光粉混合制备出浆料,采用丝网印刷方法将其印刷在高热导蓝宝石片上,在较低烧结温度下成功制备出具有高显指白光的PiG荧光薄膜(Phosphors in glass flim,PiGF),并系统地研究了玻璃/荧光粉比例及荧光粉配比对PiGF在色温(CCT)、显色指数(CRI)、发光效率(LE)等方面的影响规律。在12.5 W电功率的蓝光激光(455 nm)激发下,当荧光粉/玻璃质量比例为1∶4、535 nm/660 nm荧光粉质量比为9∶1时,可产生色温为5 500 K、显色指数达92的高显指白光PiGF。该结果表明PiGF在高显指、白光激光照明领域具有极大的应用价值。
荧光薄膜 激光照明 高显色指数 PiG荧光薄膜 fluorescent film laser-driven lighting high CRI phosphors in glass flim(PiGF) 
发光学报
2021, 42(10): 1627
作者单位
摘要
1 深圳大学生命与海洋科学学院, 广东省植物表观遗传学重点实验室, 广东 深圳 518060
2 深圳大学龙华生物产业创新研究院, 广东 深圳 518060
3 深圳大学物理与光电工程学院, 广东 深圳 518060
细胞是动植物结构和生命活动的基本单位。 细胞过程的一个重要特点就是其生化组分在时空调控上的相互作用关系。 然而, 利用传统的生化方法(如酵母双杂交系统、 pull-down系统等)很难在空间上评估活细胞内分子间的相互作用。 光学技术的快速发展, 为研究活细胞中生物分子的时空动态提供了新的遗传研究工具, 其中荧光共振能量转移-荧光寿命显微成像(FRET-FLIM)技术在实时探测分析活细胞中生物大分子构象变化和分子间动态相互作用过程具有独特的优势, 如: 实现对活细胞的实时“可视化”研究, 同时具有高时空分辨率; 检测更加灵敏、 结果可信度高; 且基于简易的数学运算完成简单快捷的分析程序。 介绍FRET-FLIM技术的理论背景知识, 对比了该技术与传统蛋白相互作用技术研究的利弊, 同时归纳了其在蛋白相互作用、 细胞生物学和疾病诊断等方面的最新应用研究进展, 最后总结和讨论了FRET-FLIM技术的未来发展趋势, 以期能够为揭示活细胞的结构和细胞过程相关研究提供新的见解。
荧光共振能量转移 荧光寿命显微成像 蛋白相互作用 疾病诊断 Fluorescence resonance energy transfer (FRET) Fluorescence lifetime imaging microscopy (FLIM) Protein interaction Disease diagnosis 
光谱学与光谱分析
2021, 41(4): 1023
Author Affiliations
Abstract
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
Inorganic quantum dots (QDs) have excellent optical properties, such as high fluorescence intensity, excellent photostability and tunable emission wavelength, etc., facilitating them to be used as labels and probes for bioimaging. In this study, CdSe@ZnS QDs are used as probes for Fluorescence lifetime imaging microscope (FLIM) and stimulated emission depletion (STED) nanoscopy imaging. The emission peak of CdSe@ZnS QDs centered at 526 nm with a narrow width of 19 nm and the photoluminescence quantum yield (PLQY) was 64%. The QDs presented excellent anti-photobleaching property which can be irradiated for 400 min by STED laser with 39.8mW. The lateral resolution of 42.0 nm is demonstrated for single QDs under STED laser (27.5mW) irradiation. Furthermore, the CdSe@ZnS QDs were for the first time used to successfully label the lysosomes of living HeLa cells and 81.5nm lateral resolution is obtained indicating the available super-resolution applications in living cells for inorganic QD probes. Meanwhile, Eca-109 cells labeled with the CdSe@ZnS QDs was observed with FLIM, and their fluorescence lifetime was around 3.1 ns, consistent with the in vitro value, suggesting that the QDs could act as a satisfactory probe in further FLIM-STED experiments.
CdSe@ZnS QDs FLIM STED living cells 
Journal of Innovative Optical Health Sciences
2019, 12(5): 1940003
Author Affiliations
Abstract
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
Recently, photothermal therapy (PTT) has been proved to have great potential in tumor therapy. In the last several years, MoS2, as one novel member of nanomaterials, has been applied into PTT due to its excellent photothermal conversion e±cacy. In this work, we applied fluorescence lifetime imaging microscopy (FLIM) techniques into monitoring the PPTtriggered cell death under MoS2 nanosheet treatment. Two types of MoS2 nanosheets (single layer nanosheets and few layer nanosheets) were obtained, both of which exhibited presentable photothermal conversion e±cacy, leang to high cell death rates of 4T1 cells (mouse breast cancer cells) under PTT. Next, live cell images of 4T1 cells were obtained via directly labeling the mitochondria with Rodamine123, which were then continuously observed with FLIM technique. FLIM data showed that the fluorescence lifetimes of mitochondria targeting dye in cells treated with each type of MoS2 nanosheets significantly increased during PTT treatment. By contrast, the fluorescence lifetime of the same dye in control cells (without nanomaterials) remained constant after laser irradiation. These findings suggest that FLIM can be of great value in monitoring cell death process during PTT of cancer cells, which could provide dynamic data of the cellular microenvironment at single cell level in multiple biomedical applications.
Fluorescence lifetime imaging microscopy (FLIM) MoS2 nanosheets photothermal therapy (PTT) 4T1 cells 
Journal of Innovative Optical Health Sciences
2019, 12(5): 1940002
Author Affiliations
Abstract
1 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
2 Becker & Hickl GmbH, Nunsdorfer Ring 7-9, Berlin 12277, Germany
Fluorescence lifetime imaging microscopy (FLIM) is increasingly used in biomedicine, material science, chemistry, and other related research fields, because of its advantages of high specificity and sensitivity in monitoring cellular microenvironments, studying interaction between proteins, metabolic state, screening drugs and analyzing their e±cacy, characterizing novel materials, and diagnosing early cancers. Understandably, there is a large interest in obtaining FLIM data within an acquisition time as short as possible. Consequently, there is currently a technology that advances towards faster and faster FLIM recording. However, the maximum speed of a recording technique is only part of the problem. The acquisition time of a FLIM image is a complex function of many factors. These include the photon rate that can be obtained from the sample, the amount of information a technique extracts from the decay functions, the e±ciency at which it determines fluorescence decay parameters from the recorded photons, the demands for the accuracy of these parameters, the number of pixels, and the lateral and axial resolutions that are obtained in biological materials. Starting from a discussion of the parameters which determine the acquisition time, this review will describe existing and emerging FLIM techniques and data analysis algorithms, and analyze their performance and recording speed in biological and biomedical applications.
Fluorescence lifetime imaging microscopy (FLIM) acquisition time imaging speed dead time photon e±ciency time domain frequency domain scanning wide-field imaging timecorrelated single photon counting (TCSPC) gated detection gated image intensifier modulated image intensifier SPAD array detector 
Journal of Innovative Optical Health Sciences
2019, 12(5): 1930003
Author Affiliations
Abstract
Department of Biomedical Engineering University of California at Irvine Irvine, CA 92697-2715, USA
We have developed a two-photon fluorescence microscope capable of imaging up to 4mm in turbid media with micron resolution. The key feature of this instrument is the innovative detector, capable of collecting emission photons from a wider surface area of the sample than detectors in traditional two-photon microscopes. This detection scheme is extremely efficient in the collection of emitted photons scattered by turbid media which allows eight fold increase in the imaging depth when compared with conventional two-photon microscopes. Furthermore, this system also has in-depth fluorescence lifetime imaging microscopy (FLIM) imaging capability which increases image contrast. The detection scheme captures emission light in a transmission configuration, making it extremely efficient for the detection of second harmonic generation (SHG) signals, which is generally forward propagating. Here we present imaging experiments of tissue phantoms and in vivo and ex vivo biological tissue performed with this microscope.
Deep tissue microscopy fluorescence SHG FLIM 
Journal of Innovative Optical Health Sciences
2014, 7(5): 1450034
Author Affiliations
Abstract
1 Photonics Group, Department of Physics, Imperial College London South Kensington Campus, London, SW7 2AZ, UK
2 Institute of Chemical Biology, Department of Chemistry Imperial College London, South Kensington Campus London, SW7 2AZ, UK
3 Department of Surgery and Cancer, Imperial College London Du Cane Road, London, W12 0NN, UK
4 National Heart & Lung Institute Imperial Centre for Experimental & Translational Medicine Du Cane Road, London, W12 0NN, UK
5 Centre for Histopathology, Imperial College London Du Cane Road, London, W12 0NN, UK
Fluorescence lifetime imaging (FLIM) is increasingly used to read out cellular autofluorescence originating from the coenzyme NADH in the context of investigating cell metabolic state. We present here an automated multiwell plate reading FLIM microscope optimized for UV illumination with the goal of extending high content fluorescence lifetime assays to readouts of metabolism. We demonstrate its application to automated cellular autofluorescence lifetime imaging and discuss the key practical issues associated with its implementation. In particular, we illustrate its capability to read out the NADH-lifetime response of cells to metabolic modulators, thereby illustrating the potential of the instrument for cytotoxicity studies, assays for drug discovery and stratified medicine.
High content analysis FLIM NADH metabolism cisplatin 
Journal of Innovative Optical Health Sciences
2014, 7(5): 1450025
作者单位
摘要
曲阜师范大学 激光研究所 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
为了研究 TiO2禁带宽度和光吸收系数对其光催化性能的影响, 利用电子束沉积方法在玻璃基底上制备了TiO2薄膜及Zr掺杂TiO2薄膜。采用拉曼光谱仪和分光光度计对膜的结构和吸收光谱进行了表征。研究结果表明:当退火温度为773K时,沉积得到的TiO2薄膜为锐钛矿结构薄膜; 掺杂使 TiO2禁带宽度变窄, 吸收波长红移,在 350~450nm 附近光吸收系数增大, 增强了 TiO2的光催化活性。
TiO2薄膜 电子束沉积 掺杂 禁带宽度 拉曼光谱 TiO2 flim electron beam gun evaporation doped forbidden bandwidth Raman spectra 
光学技术
2014, 40(4): 313
Author Affiliations
Abstract
1 Department of Physics, King's College London, Strand, London WC2R 2LS, UK
2 Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK
3 PhotoBiotics Ltd., 21 Wilson Street, London EC2M 2TD, UK
Fluorescence liftime imaging (FLIM) of modified hydrophobic bodipy dyes that act as fluorescent molecular rotors shows that the fluorescence lifetime of these probes is a function of the microviscosity of their environment. Incubating cells with these dyes, we find a punctate and continuous distribution of the dye in cells. The viscosity value obtained in what appears to be endocytotic vesicles in living cells is around 100 times higher than that of water and of cellular cytoplasm.Time-resolved fluorescence anisotropy measurements also yield rotational correlation times consistent with large microviscosity values. In this way, we successfully develop a practical and versatile approach to map the microviscosity in cells based on imaging fluorescent molecular rotors.
荧光寿命成像(FLIM) 分子旋转体 180.0180 Microscopy 300.0300 Spectroscopy 170.0170 Medical optics and biotechnology 110.0110 Imaging systems 
Chinese Optics Letters
2010, 8(10): 926
作者单位
摘要
国防科技大学理学院,湖南,长沙,410073
分析了激光对以K9玻璃为基体的铝膜反射镜的加热问题,将铝膜作为平面热传导,K9玻璃基体作为三维热传导,用有限元法计算了温度分布和K9玻璃基体的热应力分布,讨论了反射率和激光传输距离对温升和热应力的影响。结果表明,二者对温升和应力的影响很大,铝膜反射率增大,温升和应力变低,激光传输距离增加,温升和应力也变低。铝膜的破坏阈值大于K9玻璃的破坏阈值,在确保铝膜反射率的同时,根据K9玻璃基体应力小于其抗拉强度来选择合适的传输距离,可避免反射镜破损。
铝膜反射镜 温升 应力 有限元 Al-flim reflector Temperature increment Stress Finite element 
红外与激光工程
2001, 30(2): 128

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!