邓师禹 1胡芬 1,*侯梦迪 1杨建宇 1[ ... ]潘雷霆 1,2,3,4,**
作者单位
摘要
1 弱光非线性光子学教育部重点实验室,南开大学物理科学学院,泰达应用物理研究院,天津 300071
2 药物化学生物学全国重点实验室,南开大学生命科学学院,细胞应答交叉科学中心,天津 300071
3 南开大学深圳研究院,广东 深圳 518083
4 极端光学协同创新中心,山西大学,山西 太原 030006
随机光学重建显微术(STORM)基于免疫荧光标记技术,具有原理易懂、光路简单、分辨率极高等特点,一直受到科研工作者的青睐,但分辨率的提升对抗体的特异性提出了更高的要求。相较一抗直接标记,“一抗+二抗”的间接标记法在实际应用中普适性更强。二抗相对一抗存在物种特异性的问题,生产时需要对其进行预吸附来提升物种特异性。为了探究二抗物种特异性对双色STORM成像的影响,基于经典的红细胞骨架模型中血影蛋白N端和C端的互斥位置关系,对二者使用高、低吸附二抗标记后分别进行双色STORM成像,对照模拟中有无信号串扰条件下的互相关分析结果,结果表明低吸附二抗会造成二者共定位的假象。进一步,分别通过高、低吸附二抗对MDA-MB-231乳腺癌细胞CD47和PD-L1两种膜蛋白进行双色STORM成像,结果揭示两种蛋白无共定位关系。本研究为二抗物种特异性的评估提供了一种基于红细胞骨架结构模型的超分辨成像新策略,助力双色STORM成像精准阐明蛋白分子互作关系。
超分辨成像 随机光学重建显微术 免疫荧光 红细胞膜骨架 互相关分析 
激光与光电子学进展
2024, 61(6): 0618008
作者单位
摘要
西安建筑科技大学材料科学与工程学院,西安 710055
Y掺杂的BaZrO3因其优异的化学稳定性而被广泛研究。然而,较高的烧结温度限制了其应用。为改善BaZrO3的烧结活性,对Y-BaZrO3采用Pr3+和Ni2+进行共掺杂,并对其微观形貌及电化学性能进行研究。Ni与材料形成固溶体,Pr3+的掺杂增大了晶粒尺寸,这对致密化过程极为重要。XPS、Raman和EPR结果表明,少量Pr3+掺杂可以增加材料的氧空位含量,并通过加速水的解离和吸附促进质子进入,从而促进质子传导。然而,过量Pr3+掺杂导致的高浓度氧空位会产生缺陷缔合反应,使低温下的电导率略有下降。随着温度的升高,氢分离膜的氢渗透性也增加。此外,BaZr0.66Y0.2Pr0.1Ni0.04O3-δ的氢渗透性高于BaZr0.71Y0.2Pr0.05Ni0.04O3-δ,在1 173 K时,氢渗透性达到2.60×10-8 mol·cm-2·s-1。
氧空位 质子电导率 氢分离膜 oxygen vacancy proton conductivity hydrogen separation membrane 
硅酸盐学报
2023, 51(12): 3083
作者单位
摘要
精准智能化学重点实验室 中国科学技术大学高分子科学与工程系合肥 230026
丙烯腈(AN)与亲水性单体共聚是制备抗污性高分子材料的研究方向之一。本研究以丙烯腈为主单体,马来酸(MA)为共聚单体,二甲亚砜(DMSO)水溶液为溶剂,采用60Co γ-射线辐射引发AN/MA沉淀共聚反应合成AN/MA共聚物(P(AN-co-MA)),进一步采用相转化法,制备P(AN-co-MA)共聚物膜。研究了溶剂对单体转化率和共聚物分子量的影响,以及膜的孔隙率、亲水性、Zeta电势和抗污性能随马来酸酐(MAH)投料比的增加而发生的变化。结果表明:当以质量比为3∶2的DMSO/H2O混合体系为溶剂时,单体转化率达到80%以上,所得共聚物的分子量接近22万。随着MAH投料比从0%增加至30%(物质的量),共聚物的分子量逐渐减小,膜表面的孔隙率由17.2%增至25.1%,水接触角从50.8°减小到25.5°,Zeta电势由-11.8 mV降低至-22.7 mV。MAH物质的量投料比为30%的共聚物膜对牛血清白蛋白(BSA)的吸附量只有PAN均聚物膜的52.1%。本工作为利用辐射技术制备结构性能可调的聚丙烯腈基抗污染膜提供了有用的参考。
丙烯腈 马来酸 辐射共聚 聚丙烯腈基亲水膜 抗污性能 Acrylonitrile Maleic acid Radiation-induced copolymerization PAN-based hydrophilic membrane Anti-fouling 
辐射研究与辐射工艺学报
2023, 41(5): 050201
作者单位
摘要
中国建筑材料科学研究总院有限公司, 北京 100024
金导体浆料因具有较好的稳定性与可焊性而被广泛应用于低温共烧陶瓷(LTCC)中。金粉的表面形貌、粒径等性质会对金导体浆料产生较大影响。以氯金酸为原料、D-异抗坏血酸为还原剂、阿拉伯树胶为分散剂, 采用不同试验条件制备了纯度较高的三种类球形金粉, 且三种金粉的表面形貌、粒径与比表面积均不同。金粉生长过程属于种子介导的生长方法, 控制Cl-浓度与反应液pH值最终可获得不同形貌与粒径的金粉。研究表明, 三种金粉的比表面积分别为0.740、0.418、0.447 m2·g-1。金粉比表面积显著影响金浆的黏度, 以三种金粉为功能相, 在相同配比下制备LTCC用金导体浆料, 其黏度分别为326、209及214 Pa·s。试验结果表明, 以NaOH溶液溶解氯金酸并调整氯金酸溶液pH值为2, 30%(质量分数)二乙二醇乙醚溶液作还原剂溶剂时制得的金粉为功能相来制备金导体浆料, 烧结后膜层致密度最高、方阻较低以及金丝键合强度最高, 其方阻与金丝键合强度分别为1.11 mΩ/□与866 g, 三种金导体浆料均具有较好的可焊性。
低温共烧陶瓷 金粉形貌 比表面积 金导体浆料 膜层致密度 金丝键合强度 low temperature co-fired ceramics gold powder morphology specific surface area gold conductor paste membrane layer density gold wire bond strength 
硅酸盐通报
2023, 42(11): 4113
作者单位
摘要
上海电力大学 电子与信息工程学院,上海 201306
为了精确测量溶解氧(DO)浓度,提高传感器灵敏度和稳定性,文章采用改进的溶胶-凝胶技术,以钌(Ru)为荧光指示剂,研制了两种基于荧光猝灭原理的氟化改性干凝胶氧气敏感材料,分别为三氟丙基三甲氧基硅烷/正硅酸四乙酯(TFP-Tri-MOS/TEOS)和三氟丙基三甲氧基硅烷/1,2-双(三乙氧基硅基)乙烷(TFP-TriMOS/BTESE)氟化杂化干凝胶,采用浸渍涂膜法将敏感材料涂覆于塑料光纤表面制备氧气传感探头,并对其不同前驱体配比下的DO传感性能进行研究。实验结果表明,所制备的光纤氧传感探头均具有较好的DO传感性能,且检测下限分别为0.135和0.118 mg/L。与涂覆单一前驱体(TEOS、BTESE和TFP-TriMOS)的光纤氧传感探头相比,基于氟化改性干凝胶的光纤氧传感探头具有更高的线性度,以及更低的检测下限。对氟化改性DO传感探头的稳定性和在不同pH值下的抗干扰能力进行了研究,结果表明,所制备的两种光纤氧传感探头均具有较好的稳定性和抗干扰能力。
光纤传感 氧敏感膜 氟化改性干凝胶 溶解氧 optical fiber sensing oxygen sensitive membrane fluorinated dry gel DO 
光通信研究
2023, 49(5): 50
Author Affiliations
Abstract
1 Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
2 School of Engineering and Information Technology, University of New South Wales, Canberra ACT 2600, Australia
3 School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
4 ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Research School of Physics, Australian National University, Canberra ACT 2601, Australia
5 Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances. Compared to metasurfaces composed of the periodic arrangement of nanoparticles, inverse, so-called, membrane metasurfaces offer unique possibilities for supporting multipolar resonances, while maintaining small unit cell size, large mode volume and high field enhancement for enhancing nonlinear frequency conversion. Here, we theoretically and experimentally investigate the formation of bound states in the continuum (BICs) from silicon dimer-hole membrane metasurfaces. We demonstrate that our BIC-formed resonance features a strong and tailorable electric near-field confinement inside the silicon membrane films. Furthermore, we show that by tuning the gap between the holes, one can open a leaky channel to transform these regular BICs into quasi-BICs, which can be excited directly under normal plane wave incidence. To prove the capabilities of such metasurfaces, we demonstrate the conversion of an infrared image to the visible range, based on the Third-harmonic generation (THG) process with the resonant membrane metasurfaces. Our results suggest a new paradigm for realising efficient nonlinear photonics metadevices and hold promise for extending the applications of nonlinear structuring surfaces to new types of all-optical near-infrared imaging technologies.
nonlinear imaging third-harmonic generation bound states in the continuum membrane metasurfaces 
Opto-Electronic Advances
2023, 6(8): 220174
作者单位
摘要
1 沈阳建筑大学市政与环境工程学院,沈阳 110170
2 南宁职业技术学院建筑工程学院,南宁 530000
净水厂广泛采用石英砂或锰砂滤池,但在接触氧化法除锰过程中存在滤料吸附性能差、“锰质活性滤膜”成熟期长等问题。针对这一现象,以沸石为基质材料,高锰酸钾和硫酸锰生成锰氧化物沉积在沸石表面,制备锰氧化膜包覆沸石(MOMCZ),MOMCZ结合了沸石的吸附性能和锰氧化物的催化氧化特性。采用SEM、EDS、XPS、XRD、BET、Zeta电位等分析表征方法研究MOMCZ的表面形态、化学组成等特性,通过响应曲面模型分析MOMCZ对锰离子的吸附性能。结果表明:MOMCZ表面的锰氧化膜呈现立体复杂的网状结构,Mn元素存在形式及摩尔分数分别为Mn(Ⅲ)5128%,Mn(Ⅳ)48.72%,锰氧化膜主要成分为Na0.55Mn2O4(H2O)1.5;MOMCZ比表面积为38.76 m2/g,孔径分布集中在3~40 nm,等电点pH=2.36;MOMCZ吸附锰离子的四项影响因素关系顺序为:pH值>负荷>吸附时间>吸附温度;通过模型优化发现当负荷为0.8 mg/g、pH=8.5、吸附温度为23.40 ℃、吸附时间为6.58 min时,锰离子去除率达到最大值70.82%;试验模型预测值和实际数据值相对误差均小于2.5%。MOMCZ吸附锰离子响应曲面模型拟合程度高、预测准确,具有较高的可行性和参考价值。
沸石 锰氧化膜 吸附 响应曲面 zeolite manganese oxide membrane Na0.55Mn2O4(H2O)1.5 Na0.55Mn2O4(H2O)1.5 adsorption response surface 
硅酸盐通报
2023, 42(9): 3295
作者单位
摘要
1 上海第二工业大学资源与环境工程学院,上海 201209
2 上海第二工业大学能源与材料学院,上海 201209
本文通过浸没沉淀相转换法制备了具有整体式结构的氧化锌/氯氧化铋/氧化石墨烯/聚偏氟乙烯(ZnO/BiOCl/GO/PVDF)复合膜,以亚甲基蓝(MB)、罗丹明(RhB)和四环素(TC)为目标污染物验证了复合膜的光催化降解性能,通过XRD、SEM等测试方法对复合膜进行测试。结果表明,氯氧化铋(BiOCl)的薄片结构提供更多的活性位点,氧化石墨烯(GO)的褶皱状结构有利于ZnO的结合,有助于光催化效果的提升。同时ZnO与BiOCl形成p-n异质结,扩大复合材料的可见光响应范围,在可见光照射下,180 min时对RhB的去除率达95.5%,140 min时对TC的去除率达93.1%以上,能够基本去除污染物;循环使用5次后,复合膜对MB的降解率仍达97.8%。在“双碳”背景下,本文制备的具有整体式结构的ZnO/BiOCl/GO/PVDF复合膜可作为一种环保、稳定、经济的光催化剂,用于去除MB等水溶性污染物,该复合膜在整体式结构催化剂降解水溶性污染物废水中具有广阔的应用前景。
整体式结构 复合膜 双碳 光催化 水溶性污染物 ZnO ZnO BiOCl BiOCl monolithic structure composite membrane double carbon photocatalysis water-soluble pollutant 
硅酸盐通报
2023, 42(8): 2994
作者单位
摘要
兰州交通大学数理学院,兰州 730070
针对低频声波的衰减问题,设计了一种大尺寸月牙盘非对称薄膜型声学超材料结构,利用有限元法计算了其传输损失和位移场。其结构尺寸可达 100 mm,隔声频率降低至 10 Hz,并在 10~500 Hz 的低频范围内展现出良好的隔声性能。与对称型薄膜声学超材料结构的隔声频带和隔声量相比,通过在单胞中引入不对称性,使得结构的低频隔声频带拓宽了 23 Hz。通过模态分析发现,不对称性使薄膜声学超材料产生更多的振动耦合模式,Lorentz 共振与 Fano 共振的同时存在提升了月牙盘型非对称结构的隔声性能。同时,薄膜和质量块的尺寸与偏心量等参数变化可进一步优化隔声效果,为声屏障低频隔声效果的提升在结构优化设计方面提供了一种解决思路。
薄膜型声学超材料 非对称结构 隔声特性 有限元法 声固耦合 低频 membrane-type acoustic metamaterial asymmetric structure sound insulation characteristic finite element method acoustic-structure coupled low-frequency 
人工晶体学报
2023, 52(8): 1441
赵秀宝 1,2,3郭仁春 1,**章昱昭 2,3,4王金刚 2,3,4[ ... ]王晓朵 2,3,*
作者单位
摘要
1 沈阳化工大学信息工程学院,辽宁 沈阳 110027
2 中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁 沈阳 110016
3 中国科学院机器人与智能制造创新研究院,辽宁 沈阳 110016
4 中国科学院大学,北京 100049
微型软体机器人通常具有结构尺寸小、柔性可变形等特征,在生物传感以及靶向载药等方面具有广阔的应用前景。刺激响应型水凝胶材料对外界刺激具有膨胀收缩的能力,是一种优异的微型软体机器人本体材料。目前针对提升微型软体机器人变形能力的研究主要聚焦于材料性能的提升和加工工艺的优化上,而通过微型软体机器人关节结构优化来提升其变形性能的研究相对较少。鉴于此,笔者提出了一种基于双光子聚合加工的双层膜弧形关节的设计方法,有效提升了双层膜关节的形变能力。通过改变双光子聚合过程中的激光功率和扫描速度,可有效调节pH响应材料的溶胀响应特性,进而获得双层膜关节的变形或驱动能力。进一步,笔者制备了圆心角不同的双层膜弧形关节,结果表明:不同圆心角的双层膜弧形关节在pH响应下的形变能力具有明显差异,当圆心角为240°时形变率最大,形变率是传统直角形双层膜关节的6.73倍。基于双层膜设计和构建的弧形关节具有良好的稳定性和形变能力,为微型机器人的高效驱动提供了新的设计思路。
激光技术 双光子聚合 微尺度 双层膜 变形性能 
中国激光
2023, 50(20): 2002402

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!