Author Affiliations
Abstract
1 Department of Technical Cybernetics, Samara National Research University, Moskovskoye Shosse 34, Samara 443086, Russia
2 Institute of RAS-Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeiskaya 151, Samara 443001, Russia
3 Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, Warszawa 00-662, Poland
We propose a polarization-insensitive design of a hybrid plasmonic waveguide (HPWG) optimized at the 3.392 μm wavelength which corresponds to the absorption line of methane gas. The waveguide design is capable of providing high mode sensitivity (Smode) and evanescent field ratio (EFR) for both transverse electric (TE) and transverse magnetic (TM) hybrid modes. The modal analysis of the waveguide is performed via 2-dimension (2D) and 3-dimension (3D) finite element methods (FEMs). At optimized waveguide parameters, Smode and EFR of 0.94 and 0.704, can be obtained for the TE hybrid mode, respectively, whereas the TM hybrid mode can offer Smode and EFR of 0.86 and 0.67, respectively. The TE and TM hybrid modes power dissipation of ~3 dB can be obtained for a 20-μm-long hybrid plasmonic waveguide at the 60% gas concentration. We believe that the highly sensitive waveguide scheme proposed in this work overcomes the limitation of the polarization controlled light and can be utilized in gas sensing applications.
Hybrid plasmonic waveguide finite element method methane gas evanescent field absorption gas sensor polarization-insensitive 
Photonic Sensors
2021, 11(3): 279
作者单位
摘要
1 湖北工程学院 物理与电子信息工程学院, 湖北 孝感 432000
2 华中科技大学 武汉光电国家研究中心, 武汉 430074
为了降低功耗、实现超快速响应,设计了一种基于双矩形腔边耦合等离子体波导系统,并研究了其等离子体诱导透明效应.采用光学Kerr效应超快调控石墨烯-Ag复合材料波导结构,实现1 ps量级的超快响应时间.动态调控等离子体波导的传输相移,当泵浦光强为5.83 MW/cm2时,等离子体诱导透明系统能够实现透射光谱π相移,这是因为基于石墨烯-Ag复合材料结构等离子体波导具有大的等效光学Kerr非线性系数,表面等离子体激元局域光场和等离子体诱导透明效应慢光对光学Kerr效应产生了协同增强作用,大大降低了系统获得透射光谱π相移的泵浦光强.等离子体诱导透明效应透明窗口的可调谐带宽为40 nm,系统的群延时控制在0.15 ps到0.85 ps之间,并且光波通过间接耦合或者相位耦合机制实现了等离子体诱导透明效应相移倍增效应.耦合模式理论计算结果很好地吻合了时域有限差分法仿真模拟结果,研究结果对于低功耗、超快速非线性响应和紧凑型光子器件的设计和制作具有一定的参考意义.
等离子体波导 等离子体诱导透明 时域有限差分 石墨烯 光学Kerr效应 矩形腔 Plasmonic waveguide Plasmon induced transparency Finite difference time domain Graphene Optical Kerr effect Stub nanocavities 
光子学报
2020, 49(2): 0227002
作者单位
摘要
郑州大学物理工程学院, 河南 郑州 450000
基于表面等离子激元的纳米激光器能够将光源的尺寸降低几个数量级,结合表面等离子体波可将波长限制在纳米尺度内传输,突破衍射极限,从而实现与电子学器件的尺寸相匹配,最终实现整个光互连系统的小型化和低功耗。简述了表面等离子激元的基本原理,对近年来的表面等离子激元纳米激光器的研究工作进行了总结,详细介绍了各种结构及其优势,指出了该类激光器在开发过程中面临的挑战和今后的工作重点,展望了纳米激光器广泛的应用前景。
激光器 表面等离子激元 混合表面等离子体波导 回音壁模式 
激光与光电子学进展
2019, 56(20): 202409
作者单位
摘要
1 山西大学 物理电子工程学院,山西 太原 030006
2 山西大学 现代教育技术学院计算机中心,山西 太原 030006
本文设计了一种基于同心纳米圆环谐振腔的金属-介质-金属(MIM)表面等离子体光波导(SPW), 其中外侧是一个完整的环形谐振腔, 而内侧环形谐振腔带有一个微小缺口。利用数值和解析方法分析了不同几何参数下的传输特性。可以发现, 当缺口宽度θ=5°, 位置φ=45°时, 会在波长674 nm处产生明显的等离子体诱导吸收(Plasmonic Induced Absorption, PIA)现象。基于此, 首先研究了该结构在折射率传感器方面的应用, 研究结果表明, 其灵敏度超过600 nm/RIU, 最大品质因子约为700。其次研究了其快光和慢光特性, 在PIA传输谷处会产生约-0.081 ps的光学延迟, 意味着较大的异常色散和快光效应, 而在PIA传输谷两侧的传输峰处会分别产生约为0.045 ps和0.043 ps的光学延迟, 意味着较大的正常色散和慢光效应。这种表面等离子体光波导结构在折射率传感器、纳米滤波器、光开关和片上纳米光学器件集成等领域有一定的应用前景。
表面等离子体光波导 传输特性 等离子体诱导吸收 快光和慢光效应 surface plasmonic waveguide transmission characteristics plasmon induced absorption fast-and slow-light effects 
量子光学学报
2019, 25(3): 336
作者单位
摘要
1 山西大学 物理电子工程学院,山西 太原 030006
2 山西大学 现代教育技术学院计算机中心,山西 太原 030006
3 集成光电子学国家重点实验室,中国科学院半导体研究所,北京 100083
本文设计了一种支持多重Fano谐振的金属-介质-金属(MIM)型表面等离子体光波导(SPW)结构,该结构由带有枝节谐振腔的直波导耦合同心双圆环谐振腔组成。利用有限元法进行数值仿真,研究了耦合距离、枝节的高度以及同心双圆环内、外环半径对Fano传输特性的影响。同时,结合磁场分布图,分析了多重Fano谐振形成的物理机理。另外,通过改变填充在同心双圆环谐振腔内介质材料的折射率研究了该结构在折射率传感器领域的应用。该波导结构具有灵敏度为1 400 nm/RIU,品质因数高达1 380的传感特性。最后,本文研究了该波导结构的慢光特性,研究表明Fano峰附近的最大群折射率约为11.4,最大延迟时间约为0.076 ps。这种SPW结构在纳米尺度的滤波器、折射率传感器以及慢光器件等领域有着潜在的应用前景。
表面等离子体光波导 法诺谐振 传输特性 surface plasmonic waveguide Fano resonance transmission characteristic 
量子光学学报
2019, 25(3): 325
作者单位
摘要
1 山西大学 物理电子工程学院,山西 太原 030006
2 山西大学 现代教育技术学院,山西 太原 030006
本文设计了一种支持Fano谐振传输特性的金属-介质-金属(MIM)型表面等离子体光波导结构,该结构由带有枝节谐振腔的直波导和一个开口方环谐振腔组成。利用数值方法详细研究了Fano谐振传输特性对几何参数的依赖关系,并通过时域耦合模理论(CMT)对给定参数条件下的传输谱进行了拟合验证。同时,也对该结构在折射率传感器方面的应用进行了研究,通过计算介质折射率变化引起的Fano谐振峰的波长变化可以发现,传感器的灵敏度高达1500 nm/RIU,品质因子超过1800。这种表面等离子体光波导结构在光子器件集成及纳米滤波器、快速光开关以及折射率传感器等领域有一定的应用前景。
表面等离子体光波导 传输谱 法诺谐振 surface plasmonic waveguide transmission spectrum Fano resonance 
量子光学学报
2018, 24(4): 452
作者单位
摘要
1 燕山大学 电气工程学院, 河北 秦皇岛 066004
2 东北大学秦皇岛分校 控制工程学院, 河北 秦皇岛 066004
提出了一种新颖的基于金属脊-三角形半导体的混合表面等离子体波导结构, 基于有限元法对该波导结构进行了数值仿真和分析.主要研究了该结构的电场分布、传输长度、归一化模场面积和质量因数.结果表明:在工作波长为1550 nm时, 通过优化参数, 其有效模场面积达到0.00193 λ2, 传输长度为37.7 μm, 质量因数为4853, 该结构具有较低的损耗.与金属平板混合波导结构相比, 具有更大的质量因数, 更强的光场限制能力, 波导的综合性能更好.这种波导结构在微纳米光子学、光电子通讯和光信息存储等领域具有广阔应用前景.
混合表面等离子体波导 传输特性 有限元法 表面等离子体 hybrid plasmonic waveguide transmission characteristics finite-element method surface plasmon 
红外与毫米波学报
2017, 36(6): 761
作者单位
摘要
1 山西大学物理电子工程学院,太原 030006
2 山西大学现代教育技术学院,太原 030006
本文设计了一种带有两个水平侧耦合Fabry-Perot (FP)共振腔的基于金属-绝缘体-金属(MIM)结构的Y型表面等离子体光波导结构。传输谱存在一个较窄的阻带,两个腔的长度相同时,两个输出端的传输谱几乎完全重合;两个腔长度不同时每个输出端的传输谱上的阻带位置也不同,并且当一个输出端透射率达到最小时,另一个输出端的透射率接近最大。通过调节两个FP共振腔的长度、宽度以及腔内介质的折射率,可以调节表面等离子体激元在腔内发生共振从而形成驻波的工作波长,实现探测灵敏度高达1280 nm/RIU、品质因子大于200的传感特性。利用这些特性可以在两个输出端对不同的工作波长实现滤波、开关、分束等功能,因此这种亚波长表面等离子体光波导结构在集成光学滤波器、纳米光开关、分束器以及折射率传感器等领域有一定的应用前景。
表面等离子体波导 传输谱 共振 surface plasmonic waveguide transmission spectrum resonance 
光电工程
2017, 44(10): 1004
李志全 1,*彭涛 1张明 1岳中 1[ ... ]刘同磊 1
作者单位
摘要
1 燕山大学电气工程学院, 河北 秦皇岛 066004
2 东北大学秦皇岛分校控制工程学院, 河北 秦皇岛 066004
提出了一种基于混合表面等离子体波导(HPW)的纳米激光器,并对其进行了理论研究和仿真分析。此结构通过金属-介质界面的表面等离子体模式与高增益介质半导体纳米线波导模式耦合,使中间的空气间隙场强得到显著增大,并保持低损耗传输,实现对输出光场的深亚波长约束。通过对几何参数进行优化,得到具有较小阈值和较高品质因数的纳米激光器。与边缘耦合混合表面等离子体纳米激光器比较可知,当二者的几何参数相同时,基于HPW的纳米激光器具有更小的阈值。
激光器 表面等离子体 纳米激光器 有限元 混合表面等离子体波导 
中国激光
2016, 43(10): 1001005
作者单位
摘要
安徽大学 计算智能与信号处理教育部重点实验室, 合肥 230039
设计了一种基于非线性介质SiNC/SiO2的混合表面等离子体波导,利用有限元方法定量分析了这种波导所支持基模的能流密度分布、有效折射率、传播长度和有效面积与几何结构参数以及非线性介质的依赖关系.分析结果表明,光场主要被限制在非线性区域,通过调节非线性层的厚度以及非线性比例因子,可以实现模式的有效折射率和传播长度等传输特性参数的调节.固定非线性介质比例因子,有效折射率和传播距离随非线性层厚度增加而增大;固定波导尺寸,有效折射率随比例因子增大而增大,传播距离和有效面积较小.最后,根据分析结果对非线性效应进行优化,优化后波导最优结构尺寸为波导宽度为250 nm,非线性材料层厚度为100 nm,硅层厚度为150 nm.
非线性介质 有限元法 混合表面等离子体波导 能流密度 折射率 Nonlinear media Finite element method Surface plasmonic waveguide Energy flux density Refractive index 
光子学报
2016, 45(2): 0224002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!