作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
超透镜是基于超表面对光场调控的成像器件,由于其具有体积小型化、工艺流程化的优势,在器件轻量化、便携性方面具有很好的应用前景。针对当前市场对透镜的体积需求,使用时域有限差分法模拟了一种新型结构的超透镜,它是基于光子晶体的平板超透镜,尺寸为长2 μm,宽1 μm,工作波长在717 nm可见光波段。该平板超透镜以TiO2波导作为衬底,由Au和GaP两组周期相同的光子晶体呈相切的结构共同蚀刻在TiO2波导上,模拟研究透镜成像效果。此外通过引入一系列不同形状的缺陷,研究其对平板透镜成像结果的影响,结果表明,当缺陷结构为矩形尺寸:Lx = 0.5 μm,Ly = 0.8 μm时,该平板超透镜呈现出最好的成像效果,达到了0.556 λ数值的超分辨,极大地提高了成像质量。未来该平板超透镜在可便携的成像设备,AR,VR以及小型医疗设备等各个领域具有极大的发展潜力。
超透镜 时域有限差分法 超分辨 光子晶体 衍射极限 superlens finite-difference time-domain method super resolution photonic crystal diffraction limit 
光学仪器
2023, 45(6): 33
作者单位
摘要
1 光电材料与技术国家重点实验室,中山大学物理与天文学院,中山大学物理学院,广东 广州 510275
2 汕头大学理学院物理系,广东 汕头 515063
人类社会正处于信息爆炸的大数据时代,迅速膨胀的数据在持续高速增加,需要越来越大的存储容量来承载。高密度光存储技术具有非接触、抗电磁干扰、存储密度高等优点,为更好地存储、处理、分析每天产生的海量数据提供了优质方案。然而,光储存记录点的尺寸受到衍射极限的限制,传统光存储技术的存储密度难以大幅提升。近年来,随着多参量光场调控技术的发展,高数值孔径物镜聚焦下的结构化光场有了更新颖的结构、更丰富的维度和更小的尺寸,为高密度光存储提供了更多选择。本文将综述光场调控技术在紧聚焦焦场上的最新成果,介绍实现空间紧聚焦焦场的理论设计、模拟、实验、高效生成器件和应用。这些成果将会更好地服务于高密度光存储技术的研究与应用。
光数据存储 衍射极限 光场调控 紧聚焦 光学超振荡 超构透镜 
中国激光
2023, 50(18): 1813012
作者单位
摘要
1 暨南大学 光子技术研究院 广东省光纤传感与通信技术重点实验室,广东 广州 511443
2 中国科学院理化技术研究所 仿生智能界面科学中心 有机纳米光子学实验室,北京 100190
Overview: Femtosecond laser two-photon polymerization (TPP) micro-nanofabrication technology is a new type of three-dimensional lithography technology that integrates nonlinear optics, ultra-fast pulsed laser, microscopic imaging, ultra-high-precision positioning, three-dimensional (3D) graphics CAD modeling, and photochemical materials. It has the characteristics of simplicity, low cost, high resolution, true 3D, and so on. Different from the technical route of shortening the wavelength of the traditional lithography, this TPP technology breaks through the optical diffraction limit using the ultrafast laser in the near-infrared and the nonlinear optical effect of the interaction between the laser and the material. TPP can achieve true 3D fabrication of complex 3D structures. After the femtosecond pulse laser is tightly focused in space, photopolymerization is initiated by the two-photon absorption(TPA), which can limit the fabrication area in the center of the focus. The interaction time of the ultrashort pulse with the material is much lower than the thermal relaxation of the material, avoiding the photothermal effect. The lateral linewidth can be reduced to about 100 nm due to the strong threshold characteristics of the two-photon absorption process. Thus, TPP is an ideal fabrication method in the field of 3D micro-nanostructure. Since 2001, Kawata’s team has used a near-infrared femtosecond laser with a wavelength of 780 nm to fabricate a "nanobull" with the size of red blood cells. It fully demonstrated the advantages of TPP in the preparation of three-dimensional micro-nano structures. At the same time, a polymer nanodot with a size of 120 nm was fabricated, which was only 1/7 of the laser wavelength, breaking the optical diffraction limit in this study. Since then, scientists from various countries have improved the line width, resolution, and other parameters of 3D structure by continuously improving the materials, structure, processing technology and light field control, and other aspects. At the same time, with the continuous development and improvement of the 3D nanostructure fabrication technology, the advantages of TPP technology are also reflected in some application fields, such as micro-optical devices, integrated optical devices, micro-electromechanical systems, and biomedical devices. This paper will systematically introduce the femtosecond laser TPP micro-nanofabrication technology, including the fabricating principle, the development of fabricating methods, and its research overview in many application fields. Finally, its existing problems and future development and application prospects are discussed.
飞秒激光 双光子聚合 光学衍射极限 加工分辨力 加工效率 femtosecond laser two-photon polymerization optical diffraction limit resolution efficiency 
光电工程
2023, 50(3): 220048
作者单位
摘要
1 南京理工大学 电子工程与光电技术学院,南京 210094
2 上海市计量测试技术研究院,上海 201203
3 中国电子科技集团公司第十三研究所,石家庄 050051
从显微成像测量线宽的理论模型出发,分析了限制测量精度的边缘定位误差因素,基于阶跃边缘衍射光强微分的灵敏探测原理,提出一种平移差分的微结构线宽显微测量方法,即使用压电陶瓷微位移平台微量移动待测微结构沟槽,两步平移并采集三幅对沟槽清晰成像的显微图像,显微图像依次相减得到两幅差分图,将线宽测量转为差分脉冲距离测量,利用差分脉冲在阶跃边缘附近梯度变化灵敏度高的特点,突破衍射极限,提高线宽测量精度;再用纳米精度压电陶瓷位移台标定与显微成像系统有关的倍率测量常数,以压电陶瓷位移台的高精度保证测量结果的准确性。以可溯源计量部门、线宽为30.00 μm的标准沟槽样板作为待测样品,10次测量得到线宽测量平均值30.03 μm,标准差0.005 μm,并对本方法进行了不确定度分析,最终得到合成不确定度为0.37%(k=1)。
线宽测量 光学显微 平移差分 测量精度 衍射极限 Linewidth measurement Optical microscopy Translation difference Precision Diffraction limit 
光子学报
2023, 52(2): 0212001
左超 1,2,3,*陈钱 2,*
作者单位
摘要
1 南京理工大学 电子工程与光电技术学院 智能计算成像实验室(SCILab), 江苏南京 210094
2 南京理工大学 江苏省光谱成像与智能感知重点实验室, 江苏南京 210094
3 南京理工大学智能计算成像研究院(SCIRI), 江苏南京210019
传统光学成像实质上是场景强度信号在空间维度上的直接均匀采样记录与再现的过程。在此过程中,成像的分辨率与信息量不可避免地受到光学衍射极限、探测离散器采样、成像系统空间带宽积等若干物理条件制约。如何突破这些物理限制,获得分辨率更高,视场更宽广的图像信息,是该领域的永恒课题。本文概括性地介绍了分辨率、超分辨率与空间带宽积拓展的相关基础理论,核心机理及其在计算光学成像中的若干实例。通过将这些具体个案置入“计算光学成像”这个更高维度的体系框架去分析与探讨,揭示了它们大多数都可以被理解为一种可称作“空间带宽积调控”策略,即利用成像系统的可用自由度,在成像系统有限空间带宽积的限制下,以最佳方式进行编解码和传递信息的过程,或者形象地说——“戴着脚镣跳舞”。这实质上是一种在物理限制下,在“得”与“失”之间所作出的符合规律的权衡与选择。本文的结论有望为设计和探索面向各类复杂现实成像应用的新型成像机理与方法提供有益启示。
分辨率 超分辨率 衍射极限 亚像素 空间带宽积 计算光学 计算成像 计算摄像 resolution super-resolution diffraction limit sub-pixel spatial bandwidth product computational optics computational imaging computational photography 
中国光学
2022, 15(6): 1105
李雪鹏 1,2杨晶 1,3,*筵兴伟 3陈中正 1,3[ ... ]许祖彦 1,3
作者单位
摘要
1 中国科学院理化技术研究所,中国科学院固体激光重点实验室,北京 100190
2 中国科学院大学,北京 100190
3 齐鲁中科光物理与工程技术研究院,济南 250000
4 国防科技大学 文理学院,长沙 410073
报道了高功率、高光束质量的垂直腔面发射半导体激光器(VCSEL)侧泵的Nd:YAG激光振荡器。从VCSEL泵浦源的主动冷却的热沉结构出发,设计了5个227 W的VCSEL线阵,并且通过优化侧面泵浦大口径激光棒的结构,研制成了具备480 W输出能力的棒状激光模块,相应的光-光效率为49.7%。在此基础上,设计了一种高功率、高光束质量的VCSEL侧面泵浦棒状Nd:YAG激光振荡器。腔内插入望远镜光学元件,并通过优化各光学元件的参数使其工作在热近非稳区域,以达到增大基横模体积和抑制高阶横模目的。最终,获得114 W的输出功率,相应的平均光束质量因子M2为1.42。由于VCSEL具备优秀的波长-温度稳定性,这种高功率、高光束质量的VCSEL泵浦的固体激光器在工业、空间等领域,具有极为广阔的应用前景。
垂直腔面发射半导体激光器 激光振荡器 近衍射极限光束质量 高功率 棒状激光器 vertical-cavity surface-emitting laser laser oscillator near diffraction limit beam quality high power rod laser 
强激光与粒子束
2022, 34(8): 081004
王文博 1,*惠勇凌 1,2,3,4朱占达 1,2,3,4雷訇 1,2,3,4李强 1,2,3,4
作者单位
摘要
1 北京工业大学材料与制造学部激光工程研究院, 北京 100124
2 北京市激光应用技术工程技术研究中心, 北京 100124
3 激光先进制造北京市高等学校工程研究中心, 北京 100124
4 跨尺度激光成型制造技术教育部重点实验室, 北京 100124
利用激光器实现高光束质量、高峰值功率输出是近年来的研究热点。采用芯层与包层折射率匹配的方法, 同时利用模式竞争的选模特性, 通过模拟晶体波导芯层各阶模的相对增益, 计算出在腔内不同饱和光强下芯层的截止尺寸, 制备了大芯径尺寸晶体波导, 试验研究了大芯径尺寸晶体波导主动调Q脉冲激光器输出特性。采用芯径尺寸为320 μm×400 μm的1.0%(原子百分数)Yb:YAG, 包层尺寸为7 mm×30 mm的0.5%(原子百分数)Er:YAG, 长度为77 mm的单包层矩形晶体波导, 平凹腔电光调Q, 获得脉冲能量1.29 mJ@10 kHz, 脉冲宽度10 ns, 光束质量M2=1.15×1.10的输出。试验证明大芯径尺寸晶体波导主动调Q脉冲激光器可获得近衍射极限高峰值功率脉冲输出。
全固态激光器 晶体波导 近衍射极限输出 主动调Q solid-state laser crystalline waveguide near diffraction-limit output active Q-switching 
应用激光
2022, 42(1): 76
作者单位
摘要
华东师范大学精密光谱科学与技术国家重点实验室,上海 200241
基于长工作距离的显微物镜结构设计并加工一套高分辨率显微成像系统,以应对冷原子高分辨成像的需求。仿真结果表明,所设计的高分辨率显微成像光学系统在671 nm波长附近的数值孔径为0.55、工作距离可达14 mm,并在200 μm×200 μm大小的视场范围内光学传递函数(MTF)曲线逼近理论衍射极限。实际点光源衍射实验结果表明,将直径大小为(300±50)nm的针孔作为点光源,实际测得该显微成像物镜系统的分辨率优于1 μm,可校正由厚度为3.35 mm真空视窗引入的像差,改善超冷量子气体成像系统的分辨率。通过精确控制镜筒中透镜间距,该高分辨率显微成像系统可应用于其他常用超冷原子,如Na、K和Rb等,为超冷量子气体实验提供更加直观便捷的成像探测工具。
光学设计 高分辨率原位成像 衍射极限 6Li超冷费米原子气体 像差 
激光与光电子学进展
2022, 59(2): 0222001
作者单位
摘要
1 中国科学院上海光学精密机械研究所 量子光学重点实验室,上海 201800
2 国科大杭州高等研究院,浙江 杭州 310024
3 北京理工大学 光电学院 北京市精密光电测试仪器与技术重点实验室,北京 100081
相比利用光场的一阶关联实现物空间与像空间一一对应的传统成像,鬼成像基于光场的二阶关联实现物空间与像空间的一一对应,从而获取物体图像信息。通过引入光场涨落调制和计算重构,鬼成像不仅可以具有更高的信息获取效率,而且提升了图像信息获取方式的灵活性,能够具备传统成像所不具备的成像能力。随着鬼成像在系统优化及技术应用方面的进一步发展,对鬼成像理论也提出了新的要求和挑战。文中分别从鬼成像的物理本质、图像信息获取理论及理论分辨率研究三方面介绍了中国科学院上海光学精密机械研究所近期在鬼成像理论上的若干研究工作,并对今后鬼成像的理论研究工作进行了展望。
成像系统 鬼成像 压缩感知 图像重建误差 Fisher信息 衍射极限 imaging systems ghost imaging compressive sensing image reconstruction error Fisher information diffraction limit 
红外与激光工程
2021, 50(12): 20211059
陈楠 1,2王玥 1,*刘涛 1,2,*夏洋 1,2,3,4
作者单位
摘要
1 中国科学院微电子研究所,北京 100029
2 中国科学院大学,北京,100049
3 北京市微电子制备仪器设备工程技术研究中心,北京 100029
4 集成电路测试技术北京市重点实验室,北京 100029
基于扫描探针技术设计搭建了一套散射式扫描近场光学显微系统。基于搭建的系统结构和近场信号探测原理,理论分析和实验讨论了不同因素的干扰、解调阶次、聚焦光斑等因素对近场光学信号提取的影响。为进一步验证装置性能,对纳米金颗粒和机械剥离的六方氮化硼样品进行了测试。结果表明,所搭建的装置实现了10 nm的空间分辨率,可以清晰地观察到六方氮化硼表面声子极化激元在传播-反射过程中形成的驻波现象,展示了该技术在低维纳米材料光学表征中应用的巨大应用潜力。
散射式扫描近场光学显微镜 扫描探针技术 近场光学 衍射极限 超分辨 Scattering-type scanning near field optical microscopy Scanning probe microscope Near-field optics Diffraction limit Super-resolution 
光子学报
2021, 50(11): 1111001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!