Yuchen Gao 1Yu Ye 1,2,3,*
Author Affiliations
Abstract
1 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
Moiré materials, composed of two single-layer two-dimensional semiconductors, are important because they are good platforms for studying strongly correlated physics. Among them, moiré materials based on transition metal dichalcogenides (TMDs) have been intensively studied. The hetero-bilayer can support moiré interlayer excitons if there is a small twist angle or small lattice constant difference between the TMDs in the hetero-bilayer and form a type-II band alignment. The coupling of moiré interlayer excitons to cavity modes can induce exotic phenomena. Here, we review recent advances in the coupling of moiré interlayer excitons to cavities, and comment on the current difficulties and possible future research directions in this field.Moiré materials, composed of two single-layer two-dimensional semiconductors, are important because they are good platforms for studying strongly correlated physics. Among them, moiré materials based on transition metal dichalcogenides (TMDs) have been intensively studied. The hetero-bilayer can support moiré interlayer excitons if there is a small twist angle or small lattice constant difference between the TMDs in the hetero-bilayer and form a type-II band alignment. The coupling of moiré interlayer excitons to cavity modes can induce exotic phenomena. Here, we review recent advances in the coupling of moiré interlayer excitons to cavities, and comment on the current difficulties and possible future research directions in this field.
moiré interlayer excitons optical cavity exciton–polariton Bose-Einstein condensation 
Journal of Semiconductors
2023, 44(1): 011903
Author Affiliations
Abstract
1 Beijing Academy of Quantum Information Sciences, Beijing, China
2 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
3 School of Materials Science and Engineering, Peking University, Beijing, China
4 Research Center for Wide Gap Semiconductor, Peking University, Beijing, China
5 Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
6 Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, China
7 CNR NANOTEC, Campus Ecotekne, Lecce, Italy
8 State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
9 Frontier Science Center for Quantum Information, Beijing, China
10 Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, China
The quest for realizing novel fundamental physical effects and practical applications in ambient conditions has led to tremendous interest in microcavity exciton polaritons working in the strong coupling regime at room temperature. In the past few decades, a wide range of novel semiconductor systems supporting robust exciton polaritons have emerged, which has led to the realization of various fascinating phenomena and practical applications. This paper aims to review recent theoretical and experimental developments of exciton polaritons operating at room temperature, and includes a comprehensive theoretical background, descriptions of intriguing phenomena observed in various physical systems, as well as accounts of optoelectronic applications. Specifically, an in-depth review of physical systems achieving room temperature exciton polaritons will be presented, including the early development of ZnO and GaN microcavities and other emerging systems such as organics, halide perovskite semiconductors, carbon nanotubes, and transition metal dichalcogenides. Finally, a perspective of outlooking future developments will be elaborated.
microcavity exciton polariton Bose–Einstein condensation exciton binding energy quantum simulation nonequilibrium dynamics 
Photonics Insights
2022, 1(1): R04
徐哲元 1,3,4蒋英 2,3,4,*潘安练 1,3,4,*
作者单位
摘要
1 湖南大学 材料科学与工程学院,长沙 410082
2 湖南大学 物理与微电子科学学院,长沙 410082
3 微纳结构物理与应用技术湖南省重点实验室,长沙 410082
4 光电集成创新研究院,长沙 410082
二维过渡金属硫族化合物的直接带隙、大跃迁偶极矩、强激子结合能、可范德华集成和谷极化特性,使其在激子-极化激元研究与应用中显示出巨大潜力。当激发粒子密度达到一定程度时,激子-极化激元可通过受激散射凝聚成单个宏观量子态(玻色-爱因斯坦凝聚态),它们不受粒子数反转的限制,可实现超低阈值激光。同时结合其谷极化特性,可为强耦合状态的谷电子学应用如光自旋开关和谷极化双稳态器件等提供潜在应用。分别对二维过渡金属硫族化合物中的激子-极化激元、谷极化激子-极化激元和激子-极化激元的玻色爱因斯坦凝聚的研究进展进行了系统综述,最后总结分析了未来实现二维激子-极化激元激光需解决的关键科学问题并对其发展进行了展望。
低维半导体光与物质相互作用 激子-极化激元 二维过渡金属硫族化合物 谷电子学 玻色-爱因斯坦凝聚 Low-dimensional semiconductor light-matter interaction Exciton-polariton 2D TMDs Valleytronics Bose-Einstein condensation 
光子学报
2022, 51(5): 0551307
作者单位
摘要
南京大学 电子科学与工程学院,江苏省光电功能材料重点实验室,南京210023
在硅基GaN⁃LED上成功制备了不同形状和不同尺寸的微盘。通过角分辨光谱研究了圆形和不同尺寸的六边形微盘中光与激子的耦合作用。证明了微盘中共振模式的数量和强度对光与激子间的耦合作用的影响,为实现室温下GaN微盘的激子极化激元提供了依据。
氮化镓微盘 共振模式 激子极化激元 GaN microdisk resonance mode exciton polariton 
光电子技术
2021, 41(4): 254
朱卓亚 1,2张帅 1,2杜文娜 1,2,*张青 3,*刘新风 1,2
作者单位
摘要
1 中国科学院纳米标准与检测重点实验室 中国科学院纳米科学卓越创新中心 国家纳米科学中心,北京 100190
2 中国科学院大学,北京 100049
3 北京大学 材料科学与工程学院,北京 100871
当激子与腔光子间的相互作用强于激子和腔光子的衰减时,激子能级与腔模之间产生强耦合,形成的准粒子被称为激子极化激元。激子极化激元有效质量小,同时具有较强的非线性,在慢光和低功耗发光器件等方面具有巨大的应用前景。传统Ⅲ-Ⅴ族无机半导体材料激子束缚能较弱,而有机半导体材料非线性系数较小等问题限制着室温条件下激子极化激元的应用。卤化物钙钛矿材料具有高吸收系数、长扩散长度、高缺陷容忍度以及低非辐射复合率等一系列优异的光电性质,并且具有高的激子束缚能和振子强度,成为研究光与物质强相互作用的理想材料。文中从卤化物钙钛矿结构和法布里-珀罗(Fabry-Pérot, F-P)微腔类型两方面介绍了近年来卤化物钙钛矿与F-P微腔强耦合在激子极化激元方面的研究进展。首先回顾了极化激元的研究背景和卤化物钙钛矿的基本光电特性,其次介绍了三维钙钛矿和二维层状钙钛矿各自的特点以及与F-P微腔强耦合的相关研究,随后对钙钛矿的自构型和非自构型F-P微腔激子极化激元的调控与相关应用进行了讨论,最后总结和展望了卤化物钙钛矿激子极化激元面临的挑战以及未来研究方向。
激子极化激元 钙钛矿 微腔 强耦合 exciton-polariton perovskite microcavity strong coupling 
红外与激光工程
2021, 50(11): 20210619
于果 1,2李俊超 1,2温培钧 1,2胡晓东 1,2,*
作者单位
摘要
1 北京大学物理学院, 北京 100871
2 北京大学人工微结构和介观物理国家重点实验室, 北京 100871
半导体微纳米线激光器可作为集成的相干光源,在光通信、光计算、传感器、生物学研究等领域有着广泛的应用前景。介绍了国内外在实现半导体微纳米线激光器波长可调谐及单模激射方面的研究进展。讨论了基于光子-激子强耦合效应的激子极化激元Bose-Einstein凝聚现象,为发展低激射阈值微纳米线激光器提供了新的途径。简述了基于激子极化激元的新型激光器的工作原理和新进展。
激光物理 微腔 激光 可调 单模 激子极化激元 
中国激光
2020, 47(7): 0701011
Author Affiliations
Abstract
1 Department of Electronic Engineering, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
2 Surface Physics Laboratory, Department of Physics, Fudan University, Shanghai 200433, China
3 School of Physical Science and Technology, Guangxi University, Nanning 530004, China
In this paper, we report the exciton polaritons in both positive and negative detuning micro cavities based on InGaN multi-quantum wells (MQWs) and the first polariton lasing in InGaN/GaN MQWs at room temperature by utilizing a 4.5λ Fabry-Perot (F-P) cavity with double dielectric distributed Bragg reflectors (DBRs). Double thresholds corresponding respectively to polariton lasing and photonic lasing are observed along with half-width narrowing and peak blue-shifts. The threshold of polariton lasing is about half of the threshold of photonic lasing. Our results paved a substantial way for ultra-low threshold lasers and room temperature Bose-Einstein Condensate (BEC) in nitride semiconductors.
exciton-polariton polariton lasing InGaN QWs 
Opto-Electronic Advances
2019, 2(12): 12190014
作者单位
摘要
航天工程大学航天装备系, 北京 101416
以GaN微米柱为平台,计算了激子极化激元的Gross-Pitaevskii方程(GP方程)。通过计算,初步分析了激子极化激元凝聚态维持稳定的时间,同时与GaAs材料制备的微腔进行了对比,讨论了失谐、耗散速率以及拉比分裂等参数对激子极化激元凝聚态稳定性的影响,发现了随着失谐参数的增大,激子极化激元凝聚态保持稳定的时间逐步延长。当失谐Δ=±75时,稳定时间达到30 ps以上,且不再大幅变化。由于选用的是宽禁带半导体材料GaN制备的微米柱,因此拉比分裂值相比GaAs等材料来说非常大,对于常温下形成激子极化激元凝聚态提供了充足的条件。
Gross-Pitaevskii方程 GaN微米柱 激子极化激元 失谐 耗散速率 拉比分裂 Gross-Pitaevskii equation GaN micrometer column exciton-polariton detuning dissipation rate Rabi splitting 
光学与光电技术
2018, 16(2): 96

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!