作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林长春130033
大型望远镜的次镜支撑系统受重力影响,在不同俯仰角状态下会引入不同幅度的姿态误差,导致系统光路偏移,最终影响终端成像设备。如果不进行次镜姿态校正,在望远镜俯仰运动过程中,像点偏移过大,会导致精跟系统超限失效问题,基于望远镜主次镜光学设计参数,利用次镜的曲率中心点和主次镜光路的无彗差点以及次镜六自由度平台,建立了一种次镜姿态校正方法,基于望远镜俯仰角进行次镜姿态校正。通过次镜姿态校正,使望远镜仰角变化时精密跟踪系统前端光路的最大偏移角度由12.85″优化至1.80″。该次镜姿态校正方法易于实现,效果明显,能够满足精密跟踪系统前端的光路粗对准需求,保证高分辨成像系统性能。
主动光学 大型望远镜 次镜 无彗差点 active optics large telescope secondary mirror coma free point 
光学 精密工程
2022, 30(23): 3090
胡守伟 1,2,*张勇 1,2王跃飞 1,2王佑 1,2
作者单位
摘要
1 中国科学院国家天文台南京天文光学技术研究所,江苏 南京 210042
2 中国科学院天文光学技术重点实验室,江苏 南京 210042
随着天文科学日新月异的发展和对性能越来越高的天文望远镜的迫切需求,目前,国际上正在积极建设口径20 m~40 m量级的极大口径光学红外望远镜。这些望远镜为了实现更大口径,也面临着巨大的技术挑战。其中,为使望远镜达到光学设计要求,需要创新解决方案来满足足够的负荷分担要求。本文简单介绍了国际上极大望远镜主桁架结构及关键结构件的多种设计方法,分析了各种方案的优缺点,提出了一种新的轻量化钣金焊接结构的30 m中国未来巨型望远镜方案,并在此基础上进行了大量的有限元建模、优化和仿真分析。分析结果显示,望远镜指向天顶时,第一阶模态频率为2.3 Hz,结构最大变形为3.8 mm;而望远镜指向水平方向时,第一阶模态频率减小为2.1 Hz,结构最大变形为2.9 mm,满足了望远镜的相关技术要求,为我国未来巨型望远镜的研制提供了技术参考。

极大望远镜 主桁架结构 有限元分析 模态 结构变形 中国未来巨型望远镜 extremely large telescope main truss structure finite element analysis mode deformation Chinese Future Giant Telescope 
光电工程
2022, 49(6): 210402
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
为了满足4 m大口径望远镜镜面成像对主镜位置的高精度需求,介绍了采用电机驱动浮动液压支撑方式的主镜位置控制系统设计方法。介绍了主镜位置控制系统的构成并建立了各结构的数学模型;基于线性扩张观测器和一阶动态滑模控制方法,设计了主镜位置控制器;对该控制系统进行了仿真验证。结果显示:在俯仰轴以1 (°)·s -1的速度匀速运动的情况下,每个支撑区域的跟踪误差最大值小于0.5 μm;在俯仰轴正弦引导情况下,跟踪误差最大值为1 μm,明显优于传统的比例积分控制的13 μm跟踪误差,满足4 m望远镜主镜位置控制系统的设计要求。该研究为大口径望远镜主镜位置控制系统设计提供了一定的参考。
测量 大口径望远镜 主镜 位置控制 动态滑模控制 自抗扰控制 
光学学报
2020, 40(22): 2212002
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100039
为了更好地对大口径光学系统进行误差分析、分配, 本文在美国TMT主镜团队所提出的“标准化点源敏感性”的基础上, 研究了大口径合成孔径望远镜各项误差的特性及其分配。首先, 对“标准化点源敏感性”的基本性质进行了研究, 论述了其作为大口径合成孔径望远镜全频域评价指标的优越性; 之后, 分析了不同误差源对合成孔径望远镜“标准化点源敏感性”的影响, 以及在不同评价尺度下对应的标准化点源敏感性; 最后, 利用标准化点源敏感性与斜率均方根之间的关系, 针对合成孔径望远镜子镜间相对位置误差存在封闭性的特点, 提出了基于“Brownian Bridge”过程与“标准化点源敏感性”的误差模型。本文的工作对于类似的大口径系统设计与检测也有着一定指导意义。
合成孔径 大口径望远镜 误差建模 标准化点源敏感性 synthetic aperture large telescope error modeling normalized point source sensitivity 
中国光学
2019, 12(3): 567
季杭馨 1,2,3,*朱永田 1,2胡中文 1,2
作者单位
摘要
1 中国科学院国家天文台南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院天文光学技术重点实验室, 江苏 南京 210042
3 中国科学院大学, 北京 100049
建立了基于边界限制的宽波段高效率多通道光谱仪快速设计的分析模型,讨论了多通道光谱仪的性能要求、初始结构参数、项目成本、风险之间的相互关系。该模型能够根据给定的系统指标快速计算出多通道光谱仪各子系统的结构参数,能在项目初期对方案的可行性和项目预算给出合理的评估。以4 m级望远镜为平台,设计了基于体位全息光栅的多通道光谱仪,光谱范围为350~1000 nm,每个通道在闪耀波长处的分辨率为5000,光谱仪本体峰值效率大于53%,全工作波段单色像质能量集中度在80%处优于15 μm,满足系统的性能要求。
光学设计 光谱仪 体位全息光栅 极大望远镜 
光学学报
2019, 39(3): 0330003
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
为更好地实现地基大口径望远镜库徳光路的集成装调, 在三个层次上对其误差进行分析, 并利用“Brownian Bridge”过程建立了库徳光路误差模型。首先, 基于光径方程分析了库徳光路在大气扰动影响下的光线偏离情况; 其次, 分析了动态误差所引起的光学模糊以及重力作用下的累积印透效应; 最后, 根据“Brownian Bridge”过程, 在充分考虑误差闭合链的情况下, 建立了库徳焦点位置误差的模型。结果表明: 即使在0.4 ℃/m的温差下, 大气扰动也可以引起0.2″左右的偏差, 且与2.3 mm的大气相干长度等效。同时, 由于折光补偿的符号是一致的, 故无法依靠多次测量平均抵消大气扰动的影响。根据改进的误差模型, 库徳焦点的位置误差与基于独立同分布的假设所得的结果相比, 降低了约20%, 即更充分地考虑了误差闭合的情况。
大口径望远镜 库徳光路 误差分析 large telescope Coude optics system error analysis Brownian Bridge Brownian Bridge 
红外与激光工程
2019, 48(3): 0318001
许明明 1,2,3,*胡中文 1,2季杭馨 1,2王磊 1,2[ ... ]胡启千 1,2,3
作者单位
摘要
1 中国科学院 国家天文台南京天文光学技术研究所, 江苏 南京210042
2 中国科学院 天文光学技术重点实验室, 江苏 南京210042
3 中国科学院大学, 北京100049
在极大望远镜宽视场光谱仪准直镜结构轻量化研究中, 实施多学科多目标优化的可行性设计。通过多目标遗传算法结合多学科协同对准直镜轻量化结构进行优化设计, 即以镜面形状要素为优化参数、镜面面型和质量为目标, 并借助遗传算法为优化算法获取Pareto最优解。对比研究了不同轻量化孔轻量化后综合性能和轻量化后准直镜的热稳定性, 三角型轻量化后准直镜轻量化率为70%, PV值为82.696 nm; 矩形轻量化孔准直镜轻量化率为75.3%, PV值约为107.03 nm; 准直镜环境温度变化为10 K时, 准直镜形变约增加一倍。研究结果表明: 三角形轻量化孔综合评价优于矩形孔; 准直镜结构轻量化多目标优化设计全面考虑了准直镜结构轻量化、轻量化孔形状要素和光学面型形变等多学科之间耦合问题, 设计者可按需选择全局范围内最满意的最优解, 这将大幅度降低开发成本和周期。
极大望远镜 宽视场光谱仪 准直镜 轻量化 多目标遗传算法 extremely large telescope wide field spectrometer collimating mirror lightweight multi-objective genetic algorithm 
应用光学
2019, 40(1): 45
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
为了提高大口径望远镜的抗风载扰动能力和对目标的跟踪精度, 要求望远镜控制系统有较好的动态性能和稳态跟踪精度, 望远镜的闭环控制带宽决定了控制系统的跟踪性能。因此, 首先根据望远镜结构的二质弹簧质量模型, 分析影响望远镜控制系统闭环带宽和动态响应的因素, 进而介绍提高闭环控制系统带宽的两种方法: 结构滤波器方法和加速度反馈控制方法; 然后, 详细分析了结构滤波器的设计方法及其望远镜控制系统中的应用; 最后, 分析了基于加速度反馈控制的设计方法以及该控制策略对提高望远镜控制系统闭环带宽的有效性。通过实验结果可以看出, 加速度反馈控制方法对提高望远镜镜控制系统闭环带宽更加有效。
大口径望远镜 闭环带宽 结构滤波器 加速度反馈 large telescope closed-loop bandwidth structural filter acceleration-feedback 
红外与激光工程
2018, 47(12): 1237001
胡守伟 1,2,3,*宋晓莉 1,2张惠 1,2,3
作者单位
摘要
1 中国科学院 南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院 天文光学技术重点实验室, 江苏 南京 210042
3 中国科学院大学, 北京 100039
为了解决巨型望远镜潜在的结构变形对方位轴系支撑和精密驱动的影响, 基于组合轴承和驱动车载的概念, 提出了一种集成具有轴承及驱动两个功能的机械装置。此套机械装置采用了静液压油垫和直接驱动技术。直接驱动和液压油垫组合安装在承载机构上, 可以减小电机间隙变化以便提高驱动系统的效率, 此机械装置包含一套运动副连接, 该连接允许底部静液压油垫与滑动导轨紧密贴合而上部连接到方位轴移动结构上(就方位轴而言), 由此机械装置在运行时只会受到底部滑动轨道平整度的影响而不受上部移动结构大尺度变形的影响。之后通过ANSYS对机械装置进行了静力学仿真, 以验证模型的准确性。分析结果证明: 系统在设置运动副连接和未设置运动副连接两种情况下, 施加Z轴方向力矩时, 关注点的位移由14.3 μm减小为0.85 μm; 施加X轴方向力矩时, 关注点的位移由12.9 μm减小为1.26 μm, 运动副连接层可以显著吸收望远镜方位轴移动结构变形引起的力矩, 从而不会将该作用力矩强加给静液压油垫和驱动系统。该项设计为巨型望远镜高精度轴系和精密驱动的研制提供了可靠的设计依据和技术支持。
巨型望远镜 机械装置 静液压油垫 直接驱动 运动副 ANSYS仿真 extremely large telescope mechanism hydrostatic bearings linear motors kinematical joint ANSYS simulation 
光学 精密工程
2018, 26(4): 850
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
为了增强大口径望远镜跟踪架伺服控制系统的抗扰动性能, 提高其低速跟踪精度, 提出了基于扰动力矩观测器的力矩补偿方法。该方法采用改进的加减速法控制转台的加减速时间, 使得望远镜转台微震; 通过测量电机的速度和电流响应曲线, 辨识获得望远镜转台的转动惯量。然后, 设计了望远镜转台的加速度估计器, 根据编码器位置反馈数据, 采用双积分和PD控制的方法, 估计出当前系统的加速度。最后, 基于转动惯量辨识和加速度估计, 设计了扰动力矩观测器, 根据电机的电流和转台的加速度, 计算出外部的扰动力矩, 并将扰动前馈补偿到电流控制器的输入端, 以修正电流输入参考值。在2 m望远镜控制系统中对扰动观测器的性能进行了实验验证, 结果表明, 加入扰动力矩观测器补偿后, 在跟踪斜率为0.36 (″)/s的位置斜坡时, 跟踪误差值(RMS)由0.012 7″减小到0.007 3″; 相比未加入扰动力矩观测器的补偿方法, 望远镜的低速跟踪抖动明显减小, 提高了伺服系统的低速跟踪精度, 实现了对目标的平滑、稳定跟踪。
大口径望远镜 低速跟踪 转动惯量辨识 加速度估计 扰动力矩观测器 large telescope low-speed tracking inertia identification acceleration estimation disturbance torque observer 
光学 精密工程
2017, 25(10): 2636

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!