潘武琪 1,2,3,*程志恩 1,**张忠萍 1廖新浩 1,2
作者单位
摘要
1 中国科学院上海天文台,上海 200030
2 上海科技大学物质科学与技术学院,上海 201210
3 中国科学院大学天文与空间科学学院,北京 100049
月球激光测距(LLR)是地月间距测量精度最高的技术。其中,月球激光反射器(LRRR)是实现高精度月球激光测距的关键设备。中国计划在月面放置有人部署的新一代月球激光反射器,为使反射器有效工作,需调节反射器的俯仰角、方位角,使其指向对准平均地球。本文设计了一套算法,用于计算月球激光反射器指向对准所需调节的角度,同时分析了部署时间偏差、位置偏差对指向对准的影响。月球激光反射器指向对准偏差估计值约为2.7°,最大不超过5.0°,可以满足反射器对准精度优于5.5°的需求。设计的算法和开展的分析,可以为未来中国月球激光反射器部署任务提供参考。
测量 月球激光测距 激光反射器 对准精度 平均地球 
激光与光电子学进展
2024, 61(7): 0706018
作者单位
摘要
1 常州工学院 光电信息工程学院 江苏 常州 213032
2 四川大学 电子信息学院 四川 成都 610065
悬浮显示技术是一种非常具有发展前景的显示技术,它可以将图像显示在空中,给观看者带来沉浸感和临场感的体验。目前国内悬浮3D显示技术研究还处于初级阶段。文章提出基于集成成像的悬浮3D显示系统,系统由集成成像3D显示器、半透半反镜和逆反光膜组成; 分析了集成成像3D显示的工作原理和逆反光膜的悬浮显示原理。将集成成像3D显示技术与基于逆反光膜的悬浮显示技术相结合,集成成像3D显示器发出的光线经过半透半反镜的反射到达逆反光膜,逆反光膜将光线以入射的角度进行反射并重建出3D图像,在实现3D图像悬浮显示的同时也解决了集成成像3D图像深度反转的问题,但是3D图像的亮度被大幅度的降低。系统为悬浮3D显示提供新的理论依据,为解决集成成像3D图像深度反转提供新的方法。
悬浮3D显示 逆反光膜 集成成像 深度反转 floating 3D display Retro-reflector film integral imaging depth inversion 
光学技术
2023, 49(4): 412
作者单位
摘要
四川大学 电子信息学院,四川 成都 610065
随着3D显示被应用到**医疗等尖端领域,高分辨率的3D图像变得尤为重要。然而,集成成像的3D显示性能受制于2D显示屏的分辨率。为了突破2D显示屏的分辨率限制,本文提出了基于回返器和反射偏振片的集成成像3D显示装置。该装置将显示器上的微图像阵列(elemental image array,EIA)通过反射型偏振片分离成偏振方向正交的两束光线,回返器、四分之一波片和反射型偏振片分别将两束偏振光反射,并沿着像素的对角线方向以2/2个像素错位叠加,形成一个具有更小像素单元和更多像素数量的高分辨率EIA。根据两个偏振EIA和叠加的高分辨率EIA之间的像素索引关系,反向计算出偏振EIA的像素值。实验结果表明,该系统不仅可以重构出高分辨率的3D图像,还减弱了像素间的黑网格。
分辨率增强 集成成像 偏振复用 回返器 反射偏振片 resolution enhancement integral imaging polarization multiplexing retro-reflector reflective polarizer 
液晶与显示
2022, 37(5): 555
作者单位
摘要
陆军工程大学通信工程学院, 江苏 南京 210007
针对大气湍流影响下的地-空斜程逆向调制无线光(FSO)通信问题,基于三层高度谱模型对逆向调制斜程链路下的光强闪烁进行研究,推导弱湍流下大气湍流衰落系数的概率密度函数表达式,在此基础上深入研究系统的平均中断概率、平均误码率和平均信道容量,分析天顶角、湍流强度以及接收孔径大小等因素对系统通信性能的影响。研究结果表明,在低信噪比和长距离通信的情况下,适当增大接收机孔径,地-空斜程逆向调制无线光通信系统依然可以保持较好的通信性能,随着天顶角和近地大气折射率结构常数的减小,湍流对斜程通信链路的影响也有明显减弱。
大气光学 逆向调制光通信 大气湍流 斜程激光通信 误码率分析 
光学学报
2021, 41(18): 1801002
作者单位
摘要
中国科学院安徽光学精密机械研究所,中国科学院大气光学重点实验室, 安徽 合肥 230031
根据国际上公开发表利用的1969—1972年美国Apollo 11、14、15宇航员放置在月球上的三个角反射器以及1970—1971年苏联无人登月车放置的两个角反射器进行的月球激光测距的论文和技术文献,讨论了月球激光测距中的几个关键物理和技术问题,主要包括:1)角反射器阵列指向与其月面位置的精确定位;2)角反射器激光回波信号的确认;3)接收信号强度与信噪比;4)测距结果的精度;5)满月时为什么不适于测距;6)地球大气对激光测月及其精度的影响。现有技术文献对一些关键的技术细节描述尚不完备,判定接收信号来自角反射器对激光的反射缺乏直接的物理证据,现在声称的距离测量精度与激光本身特性的关系尚需进一步分析。
测量 月球激光测距 角反射器 信噪比 Poisson概率分布 测量精度 
光学学报
2021, 41(1): 0112002
Author Affiliations
Abstract
1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
2 Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
A novel way to design arbitrarily shaped retro-reflectors by optics surface transformation is proposed. The entire design process consists of filling an optic-null medium between the input and output surfaces of the retro-reflector, on which the points have 180 deg reverse corresponding relations. The retro-reflector can be designed to be very thin (a planar structure) with high efficiency. The effective working angles of our retro-reflector are very large (from ?80 deg to +80 deg), which can, in principle, be further extended. Layered metal plates and zero refractive index materials are designed to realize the proposed retro-reflector for a TM polarized beam.
retro-reflector optics surface transformation 
Chinese Optics Letters
2020, 18(10): 102201
作者单位
摘要
1 陆军工程大学通信工程学院,江苏 南京 210007
2 战略支援部队信息通信工程设计所,辽宁 沈阳 100005
在逆向调制无线光通信系统中,大气湍流对系统的影响大于传统的无线光通信系统。本文研究了一种基于逆向端调制器分集的逆向调制无线光通信系统,以减小大气湍流对系统的影响。利用相位屏法,建立了弱湍流下的激光大气的传输模型,对比分析了逆向调制无线光通信系统逆向端逆向调制器分集和不分集分别所受到的大气湍流的影响。结果显示在相同情况下,逆向调制无线光通信系统在逆向端对逆向调制器进行分集能抑制大气湍流对系统的影响,使整个系统的闪烁指数下降。
光通信 逆向调制 大气湍流 分集 闪烁指数 optical communication modulating retro-reflector atmospheric turbulence retro-reflector diversity scintillation index 
光电工程
2020, 47(3): 190701
作者单位
摘要
空军工程大学信息与导航学院, 陕西 西安 710077
研究了弱湍流条件下无人机逆向调制激光通信系统的链路传输性能,并进行了仿真验证。考虑指向误差对系统的影响,利用高斯-厄米特积分方法推导出系统双向信道衰落概率密度函数和其累积分布函数的闭合表达式,进一步推导出系统平均误码率和中断概率的闭合表达式。研究结果表明,在弱湍流和指向误差的共同影响下,入射角度、调制阶数和角偶棱镜材料折射率对系统误码性能影响较大;当发散角为3~10 μrad时,系统误码率会达到一个最优值;当发散角分别为6,8,10 μrad时,在较高信噪比阈值条件下系统中断概率可降到10 -9数量级。
大气光学 无人机光通信 链路传输性能 高斯-厄米特积分 调制回复反射器 
激光与光电子学进展
2019, 56(6): 060101
作者单位
摘要
1 陆军工程大学 通信工程学院, 南京 210007
2 中国人民解放军31111部队, 南京 210007
研究了逆向调制光通信回波反射链路中的大气湍流效应及抑制方法。利用相位屏方法模拟大气湍流效应, 建立了弱湍流情况下高斯光束在传统无线光通信和逆向调制光通信中的传播模型, 对比分析了高斯光束在传统自由空间光通信单向链路和逆向调制光通信双向链路中大气湍流引起的闪烁指数。结果显示大气湍流对逆向调制光通信回波反射链路的影响远大于对传统自由空间光通信中单向链路的影响。还研究了孔径平均效应对逆向调制光通信中回波反射链路中闪烁指数的影响。结果表明, 对于逆向调制光通信, 大的接收孔径对于大气闪烁的抑制依然有效。
光通信 逆向调制光通信 大气湍流 猫眼 孔径平均效应 闪烁指数 optical communication modulating retro-reflector optical communication atmospheric turbulence cat-eye aperture average effect scintillation index 
半导体光电
2019, 40(1): 140
作者单位
摘要
1 中北大学电子测试技术重点实验室, 山西 太原 030051
2 中北大学信息与通信工程学院, 山西 太原 030051
水下动态参数的测试是特种**、 两栖**、 水下专用**性能考核的必备环节, 而水下运动体的速度信息是评价水下**性能的重要指标之一。 针对现有的水下高速目标参数测试系统中存在的成本高、 安装调试复杂、 设备体积庞大等问题, 提出一种以激光光幕为有效区域水上、 水下分体式, 实时、 非接触的测速方法。 通过分析Lambert-Beer定律和体散射函数等数学原理, 确定了水下光谱传输规律综合考虑性价比获得最佳峰值波长; 将1m的圆柱体作为散射体模拟光在水中的散射情况, 追迹空间区域内的光线总数为1×105, 获得位于传播方向上1, 3, 5和7 m处的接收面上辐照度的光能量分布, 从而获取系统激光光源的最佳峰值功率。 以此为依据, 采用定距测时原理和一维原向反射技术, 由峰值波长为532 nm的半导体光纤耦合绿光激光器、 光纤耦合式鲍威尔棱镜防水扩束器、 一维原向反射器等构建光学系统。 激光光源、 光电转换部分和信号调理部分位于水上, 激光光幕和原向反射器位于水下, 通过光纤束完成两路光信号的发射和反射光的回收。 发射端光纤一端与光源耦合, 另外一端与鲍威尔棱镜耦合置于水下形成扇形光幕。 接收端光纤一端均布于鲍威尔棱镜出口, 另一端与PIN型光电传感器耦合。 设计齿形一维原向反射器并完成加工制造, 光线将沿着入射光方向原向返回, 另外一维方向则仍为镜面反射, 将接收系统置于发射点垂直光面内附近即可接收大部分光能量, 解决了现有原向发射器因水介质折射率不同于空气而导致原向反射特性消失的问题。 实验采用波长为(532±5) nm绿光激光器, 功率稳定性<1%, 光学噪声< 0.5%, 准直后耦合至长度为2 m的单模光纤再经过鲍威尔棱镜展宽为60°扇形一字线光幕, 扩束模块封装采用尼龙防水材料, 接收光纤均布于光源周围形成环形光纤束, 光纤另外一端均匀排列与PIN光敏二极管直接耦合。 光敏二极管前加中心波长为532 nm的光学滤光片, FWHM=(3±1) nm, 透过率为70%。 PIN型光敏二极管有效尺寸为5.0 mm×5.0 mm。 采用多档可调的光电信号调理电路以适应不同尺寸的测试对象。 该系统进行了不同目标速度参数测试实验, 以钢弩为发射装置, 信号经过光纤回收、 信号调理, 采集至计算机处理获得波形及区间内平均速度, 两激光光幕之间的距离为定值300 mm, 波形峰值作为计时时刻。 成功获取了较高信噪比的波形信号和目标速度值。 利用水下运动体模型与模拟结果进行比较得到其绝对误差。 实验结果表明: 本方法结构简单、 重复性好, 可实现有效区域达到1 m×1 m, 最小可测目标尺寸为5 mm, 理论测速上限可达1 000 m·s-1, 实验数据通过与理论经验公式结果比对表明, 系统测试精度可达0.2%。
水下** 激光光幕 弹丸速度 一维原向反射 Submarine weapon Laser screen Velocity One-dimensional retro-reflector 
光谱学与光谱分析
2019, 39(1): 26

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!