作者单位
摘要
1 厦门烟草工业有限责任公司,福建 厦门 361022
2 同济大学机械与能源工程学院,上海 201804
烟草行业高端产品规模的扩大与消费者对产品质量需求的提高,给烟草在线检测技术带来了巨大挑战。针对烟草生产过程中烟丝异物难以剔除,影响卷烟口感、烟草叶片病情害种类繁多且病情复杂、卷烟外包装瑕疵难以识别等问题,传统人工在线检测方法效率低下,且正确率难以保证,无法适应我国烟草行业的高质量发展。在阐明基于机器视觉的烟草在线检测原理的基础上,围绕视觉检测原理和深度学习模型两个方面系统地阐述烟草在线检测技术的研究现状与最新进展,结合现有典型应用分析不同视觉模型以及深度学习模型检测方法的优越性和局限性,进而探讨基于机器视觉的烟草在线检测技术的发展趋势和前景。
机器视觉 图像识别 深度学习 在线检测 瑕疵剔除 
激光与光电子学进展
2024, 61(8): 0800003
作者单位
摘要
1 广西大学机械工程学院, 广西 南宁 530004 北京市农林科学院智能装备技术研究中心, 北京 100097国家农业智能装备工程技术研究中心, 北京 100097
2 北京市农林科学院智能装备技术研究中心, 北京 100097国家农业智能装备工程技术研究中心, 北京 100097
可溶性固形物含量(SSC)是评价西瓜果肉品质优劣的关键指标。 西瓜SSC在线检测模型的建立, 可以实现西瓜品质按其SSC进行在线分级, 满足不同人群需求, 提高市场竞争力。 以160个京美2K西瓜为研究对象, 通过实验室自主研发的在线检测设备, 采集了西瓜两种姿态的可见近红外全透射光谱数据, 分别与西瓜不同部位SSC建立偏最小二乘回归(PLSR)预测模型, 探究西瓜SSC在线检测的最佳姿态和检测部位。 首先, 分别定义西瓜不同部位SSC测量值为瓜蒂糖、 中心糖、 瓜脐糖和整果糖, 在线检测的两种姿态分别定义为T1姿态和T2姿态。 其次对比西瓜不同部位SSC, 探讨西瓜SSC评价标准。 然后去除光谱透射强度值较低且频率较高, 包含大量噪声和无用信息的光谱数据, 最终选取波长范围(671~1 116 nm)的光谱进行分析。 采用卷积平滑(SGS)算法分别与多元散射校正(MSC)、 单位矢量归一化(UVN)和标准正态变量变换(SNV)这3种算法相结合对两种姿态下的光谱数据进行预处理, 随后对应西瓜不同部位SSC分别建立预测模型。 通过对比不同模型的预测结果发现: 使用SGS和MSC组合对T1姿态采集的光谱数据预处理效果最好, 而对于T2姿态的光谱数据使用SGS与UVN结合预处理效果最好; T1姿态明显比T2姿态的光谱数据所建模型的预测效果好; 对西瓜瓜蒂糖和整果糖的预测结果较好, 瓜脐糖次之, 中心糖最差。 最后采用竞争性自适应重加权算法(CARS)分别对预测瓜蒂糖和整果糖的模型进行优化。 其中, 共挑选出81个波长点用于建立预测瓜蒂糖模型, 106个波长点用于建立预测整果糖模型, 两模型的预测集相关系数分别为0.881 0和0.875 8, 均方根误差分别为0.866 7%和0.758 9%, 不仅模型得到了简化, 还提高了模型的预测精度。 研究结果表明, 西瓜不同姿态和对不同部位SSC预测的差异, 会影响西瓜SSC在线检测和品质评价分级结果, 应根据用户的实际需求进行模型选取和优化; 为此, 提出了糖度评价指数, 为进一步开发西瓜SSC在线检测设备提供了技术支撑。
近红外光谱 西瓜 可溶性固形物含量 在线检测 模型优化 Near infrared spectroscopy Watermelon Soluble solids content Online detection Model optimization 
光谱学与光谱分析
2023, 43(6): 1800
李勇 1,2李建郎 1李展 2刘德安 2[ ... ]张军勇 2,*
作者单位
摘要
1 上海理工大学 光电信息与计算机工程学院,上海 200093
2 中国科学院上海光学精密机械研究所 高功率激光物理联合实验室,上海 201800
光学元件的损伤在高功率激光系统的终端光学组件中较为普遍且对激光系统的正常运行有重大影响。为提高元件的使用寿命和保证激光光路正常运行,首先要做的是检测和判断出损伤出现的位置、大小、类型。在线检测中终端光学损伤检测装置是一种重要的方法,它能够直接、实时地对元件的损伤情况进行成像并分析,另外还有一种间接获取损伤图像的方式,即用衍射环检测损伤,通过相关公式求出损伤点的大小和位置。针对更小的损伤的检测,深度学习这一工具能够处理大量数据,是目前研究该问题不可或缺的一类方法,它能够减少人工,并提高效率和准确率。修复损伤的主要方式是快速熔融缓解,即二氧化碳激光熔融损伤区,该方法是目前最常见、最有效的修复方式。对损伤问题处理的前提和关键在于精确定位更小的损伤点并分类不同类型的损伤,以便确定后续修复步骤。损伤的检测和修复是光学循环回路策略的重要部分,传统方法有一定的局限性。近些年,受到深度学习在图像处理和目标识别领域的优势的影响,未来会有越来越多深度学习的方法能够被用在与损伤检测相关的研究上。这对高功率激光系统长期稳定运行和正常发展有重要意义和作用。
元件损伤 在线检测 高功率激光系统 损伤修复 深度学习 Element damage On-line inspection High power laser system Damage repair Deep learning 
光子学报
2022, 51(10): 1012002
作者单位
摘要
1 中国农业大学信息与电气工程学院, 北京 100083
2 北京市农林科学院智能装备技术研究中心, 北京 100097
光谱质量、 样本个体差异、 检测系统和建模算法等多种因素共同决定水果糖度检测模型的预测精度和稳定性。 采用自主研发的短积分全透射近红外在线检测系统以5 ms积分时间和0.5 m·s-1运行速度在线获取了“富士”苹果全透射光谱信号。 不同姿态获取的透射光谱强度差异明显, 但曲线走势相近, 均在920 nm波段具有最大的光谱强度, 在850 nm波段存在波谷。 采用移动平均平滑、 标准正态变量变换和多元散射校正等预处理方法有效去除原始光谱的随机噪声和基线偏差, 减小了样本检测姿态引起的光谱差异。 为分析不同检测姿态对苹果整果糖度预测模型的影响, 构建了单一姿态局限模型和多姿态通用模型, 结果表明基于全位点平均透射光谱构建的单一姿态局限模型对检测姿态具有很大的局限性, 而多姿态通用模型预测能力较单一检测姿态相当, 但却对不同的检测姿态具有更强的适用能力。 为进一步提高光谱信号质量, 优化模型预测能力, 采用信号强度阈值优选方法实现了苹果整果糖度预测模型优化, 发现移除中央位点获取的透射光谱信号, 有利于提高苹果整果糖度预测模型精度。 多姿态通用信号强度优化模型综合考虑不同姿态获取的光谱信息有效性, 有效提升了通用信号强度优化模型的预测能力和稳定性, 当多姿态通用模型中信号强度阈值为5 000时, 模型预测性能最佳, 其预测参数Rp, RMSEP和RPD分别为0.79, 0.84%和1.58。 表明短积分全透射近红外在线检测系统用于不同姿态苹果糖度预测是可行的, 多姿态通用模型的建立, 扩大了模型在不同姿态的预测稳健性, 短积分光谱采集方式结合信号强度阈值优选方法提升了光谱信号的质量和模型的预测能力。
在线检测 全透射光谱 通用模型 苹果 糖度 Online detection Full transmittance spectrum Universal prediction model Apple Sugar content 
光谱学与光谱分析
2022, 42(6): 1907
作者单位
摘要
新疆大学 信息科学与工程学院, 新疆 乌鲁木齐 830046
红外小目标的相关研究在**领域的制导、预警和边防间谍无人机检测中极其重要。针对红外 小目标的跟踪研究, 本文提出了一种基于超分辨率增强与在线检测 DSST(Discriminative Scale Space Tracker)的小目标跟踪算法。首先, 基于融入红外图像特征的超分辨率重建算法对原始图像进行更新, 增强了弱小目标, 然后, 增强的图像被用作基于在线检测DSST算法的输入, 得到响应映射, 估计目 标位置。实验结果表明, 与几种最新算法相比, 该算法在准确性方面表现出色。
小目标跟踪 超分辨率 在线检测 small target tracking, super resolution, DSST, on- DSST 
红外技术
2022, 44(7): 659
作者单位
摘要
1 北京航空航天大学仪器科学与光电工程学院, 精密光机电一体化技术教育部重点实验室, 北京 100191
2 河北先河环保科技股份有限公司, 河北 石家庄 050035
地表水资源安全关系到国民健康、 生态环境稳定和经济可持续发展, 具有重要战略意义。 总有机碳(TOC)是一种衡量水体中有机物含量的综合指标, 其在水环境监管和治理中具有重要价值。 传统检测方法通过高温催化氧化测定水样中TOC含量具有耗时较长、 操作复杂的局限性, 紫外-可见光谱技术具有检测速度快、 操作简单的优势, 因而在水质在线检测中具有较好的应用前景。 国内外对地表水中TOC浓度的在线检测目前大多采用与COD浓度间的相关关系进行间接推算得到, 这类方法对水体成分的稳定性要求较高。 相比于常规的间接推算方法, 采用光谱定量分析方法建立TOC与紫外-可见光谱间的分析模型具有更好的鲁棒性和分析精度, 便于实现水质无人值守在线监测。 实验配置了TOC样本溶液, 设计了为期两天的实验, 在4个时间段采集得到样品光谱数据集(分别记为D1, D2, …, D6)。 首先, 通过分组实验将D1作为训练集建立TOC偏最小二乘(PLS)回归模型, 预测同一时间段测试集D2的TOC浓度, 得到平均绝对相对误差(MAPE)不超过0.78%, 表明建立的TOC定量分析模型具有较高的精度。 然后, 为验证PLS建立的TOC模型对仪器状态变化的鲁棒性, 选择不同时间段采集的光谱数据分别作为训练集和测试集, 进行不同仪器状态交叉实验, 4组实验中测试集样品TOC浓度预测值的MAPE分别为3.82%, 3.75%, 3.43%和0.98%。 实验表明, 采用PLS算法建立的TOC紫外-可见光谱定量分析模型具有较好的分析精度和鲁棒性, 分组实验和不同仪器状态交叉实验中预测浓度的MAPE均不超过3.82%, 优于常规的间接推算法。 此外, 建立的光谱定量分析模型不依赖COD与TOC间的推算关系, 因此在水环境变化时较常规推算方法具有更好的适应能力。 最后, PLS算法建模过程简单, 运算速度快, 为浸入式在线检测设备的开发和维护提供了便利。
紫外-可见光谱 偏最小二乘回归 水质在线检测 UV-Vis spectroscopy TOC PLS regression Water quality online detection TOC 
光谱学与光谱分析
2022, 42(2): 376
作者单位
摘要
1 华东交通大学机电与车辆工程学院, 江西 南昌 330013
2 南昌海关技术中心, 江西 南昌 330038
黑心病是鸭梨贮藏期间发生的生理病害, 其病变初期表现在内部果核处出现褐色斑块, 而在果实外观上与正常果几乎没有任何差异, 严重影响鸭梨的贮藏时间和品质, 亟需一种快速无损的检测方法为鸭梨质量保驾护航。 采用可见-近红外光谱法对鸭梨黑心缺陷进行在线检测和识别, 结合平滑(Smoothing)、 标准正态变量变换(SNV)、 多元散射校正(MSC)、 SG一阶导数(SG 1st-Der)以及小波变换(WT)预处理方法和主成分分析(PCA)、 k近邻(kNN)、 朴素贝叶斯(NBC)、 支持向量机(SVM)以及基于Adaboost的集成学习等方法对鸭梨黑心病进行判别研究。 Adaboost集成了kNN、 NBC和SVM三个独立学习器。 将120个健康鸭梨和165个黑心鸭梨共计285个样品划分为训练集和测试集进行模型的构建和评价, 采用训练集的查准率/查全率的调和平均值(F-measure)和正确识别率(Accuracy)对分类模型进行优化和评价。 研究结果表明: 不同属性(正常和黑心)鸭梨样品光谱的前三主成分分布图相互交错, 很难直观地对黑心鸭梨进行区分。 样品光谱经小波变换(小波基为“Haar”)预处理的kNN模型训练集的F-measure和Accuracy分别为78.98%和82.62%; 经过SG一阶导数预处理后的NBC模型训练集的F-measure和Accuracy分别为80.90%和82.11%; 经过小波变换预处理后的SVM模型训练集的F-measure和Accuracy分别为90.24%和91.58%; 经小波变换预处理的AdaBoost模型训练集的F-measure和Accuracy分别为91.46%和92.63%。 通过测试集对模型进行验证可知: 光谱经小波变换预处理后建立的Adaboost分类模型最优, 分类的F-measure达到90.91%, 较WT-kNN, SG 1st-Der-NBC和WT-SVM模型分别提高了11.39%, 15.23%和2.30%; Accuracy达到92.63 %, 分别提高了10.52%, 11.58%和2.10%; 模型对测试集样品预测时的计算时间约为0.12s, 满足在线分选要求。 可见-近红外光谱结合AdaBoost分类方法, 可以为鸭梨黑心病的在线检测提供一种快速简便的分析方法。
鸭梨 黑心病 可见-近红外光谱 集成学习 在线检测 “Yali” pear Black heart disease Vis-near infrared spectroscopy Integrated learning Online detection 
光谱学与光谱分析
2021, 41(9): 2764
作者单位
摘要
北京空间机电研究所,北京 100094
航空相机的使用环境温度变化范围较大,温度的变化会在相机光学镜头中产生温度梯度,影响相机成像质量。为保证相机光学系统的成像质量,需要对镜头在一定温度范围内进行消热设计。运用ZEMAX光学设计软件对某航空相机光学系统进行了热分析,并根据分析结果运用ANSYS软件实现了多片式、大视场角光学镜头被动式消热光机一体化设计,通过镜头内部补偿环节沿轴向的微位移改变镜间距,实现对光学系统不同温度下像质的补偿。同时,研制消热补偿试验件,采用一种高精度光学非接触式在线直接检测微位移的方法,精度达到±1 μm,完成了消热补偿试验件微位移测试。结果表明:不同温度下的微位移量与分析数据一致,最后通过对采用该消热一体化设计的实际航空镜头在不同温度下的像质检测,验证了该设计的有效性,镜头在各温况下性能良好。
航空相机 光机一体化设计 温度梯度 被动式消热补偿 非接触式在线检测 aerial camera integrated optical and mechanical design temperature gradient passive heat dissipation compensation non-contact online detection 
红外与激光工程
2021, 50(3): 20200220
作者单位
摘要
1 南京信息工程大学气象灾害与与评估协同创新中心, 中国气象局气溶胶与云降水重点实验室, 教育部气象灾害重点实验室, 江苏 南京 210044
2 江苏省大气海洋光电探测重点实验室(南京信息工程大学), 江苏省大气环境与装备技术协同创新中心, 江苏 南京 210044
3 江苏省气象探测中心, 江苏 南京 210000
4 上海卫星工程研究院, 上海 201109
褐煤是我国现阶段的主要用煤, 但因为其较低的煤化程度, 使用时会产生污染环境的二氧化碳和黑灰, 而且烟尘中含有的金属离子会危害人体健康, 所以开展对褐煤烟尘的研究非常有意义。 而激光诱导击穿光谱技术(LIBS)具有快速、 多元素同时分析的特点, 适合用于煤烟的原位在线探测。 实验制备了含铅浓度不同的三种褐煤样本(O, H, L), 其中O为原始无铅样本, 利用LIBS对褐煤及煤烟进行原位在线探测。 实验仪器主要由激光器, 反射镜, 聚焦透镜, 触发装置, 载物平台和分析系统组成。 用高纯度铅块校准实验中的的波长漂移。 分析了褐煤样本O, H, L的元素成分。 发现褐煤O中含有C, Si, Fe, Mg, Al, Ca, Sr, Na等元素, 同时检测到空气中的元素N, O, Hα和Hβ等, 且含铅褐煤光谱中多出了8条铅元素的谱线, 最后给出了褐煤中主要元素的光谱鉴别表。 然后使用447 nm的连续光点燃褐煤, 将1 064 nm的脉冲光聚焦在煤烟上, 对褐煤煤烟进行了原位在线检测。 发现煤烟中含有Mg, Ca, Al, Sr, Pb等金属离子, 说明了褐煤中的一些金属离子会随着煤烟排放到空气中并危害人体健康。 经褐煤及煤烟的光谱比较, 发现煤烟的信噪比更差, 且所有元素的谱线强度都比在褐煤中弱很多, 另外发现在烟尘中碳原子谱线的相对强度是所有元素中最高的(无明火), 这说明LIBS可以有效探测CO2。 分析了实验中的CN分子谱, 给出了CN分子的具体波长, 并利用LIFBASE软件拟合了CN分子的转动温度和振动温度, 分别为6 780和7 520 K。 最后对样本H和L两种煤烟中的铅浓度进行分析, 选取参考线(Ca Ⅱ 363.846 nm)归一化之后比较了铅元素在363.956, 368.346和405.780 nm处的相对强度, 发现这三条特征谱线的相对强度与自身实际所含的铅浓度呈很好的线性关系, 验证了LIBS技术应用于煤烟中重金属元素半定量分析的可行性。
激光诱导击穿光谱 褐煤燃烧 原位在线检测 重金属 元素分析 Laser-induced breakdown spectroscopy (LIBS) Lignite combustion In situ on-line detection Heavy metal Elemental analysis 
光谱学与光谱分析
2021, 41(3): 954
作者单位
摘要
(江南大学 理学院 江苏省轻工光电工程技术研究中心,江苏 无锡 214122)
针对皮革表面类缺陷用机器视觉在线检测时,某些缺陷成像质量对照明方向呈现各向异性甚至无法显现而形成检测盲区的问题,研究设计了一套可消除该类检测盲区的在线检测系统。基于缺陷处的散射和信息采集机理得出缺陷特征光强随照明方向的变化规律,并以压印和油墨类缺陷为例进行实验研究,发现2类缺陷特征光强分布均与照明方向相关,缺陷的检测盲区与有效区呈正交态。据此,采用自主设计的侧入式均匀照射离轴面光源,设计出线阵和面阵正交复合的在线检测系统,采用垂直目标面采集信息、45°角暗场正交照明,线阵相机和线光源组成主检测系统,面阵相机和离轴面光源辅检测系统,对随机出现的各向异性缺陷进行上百个样本检测,实验证明,缺陷检测盲区被有效消除,缺陷识别率提升了近22%,检测效率也得到大幅度提高。
在线检测 表面缺陷 各向异性 照明 皮革 on-line dectection surface defects aeolotropism lighting leather 
应用光学
2020, 41(6): 1190

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!