作者单位
摘要
1 华侨大学分析测试中心, 福建 厦门 361021
2 华侨大学化工学院, 福建 厦门 361021
3 厦门市环境科学研究院, 福建 厦门 361021
安溪是铁观音茶的源产地, 茶叶总产值每年数亿元, 但不同品质的铁观音茶价格参差不齐, 市场上存在以次充好的现象。 福建省安溪县和华安县为铁观音主要的茶产地, 两县市的茶叶产量市场占有率较高, 地理位置毗邻, 但茶叶品质和风味各有不同, 造成茶叶市场的困扰。 铁观音中微量元素种类和含量的检测, 对产地的溯源具有重要的意义。 采用X射线荧光光谱无标样半定量分析法(XRF)和微波消解/电感耦合等离子体质谱法(ICP-MS)对福建省主要茶产区安溪县(感德、 西坪、 祥华)和华安县(良村、 华丰、 仙都)的30份铁观音进行元素含量对比分析。 XRF法检测出两县茶样中存在的元素种类有K, Ca, S, P, Mg, Al, Si, Cl, Fe, Mn, Rb, Zn, Na和Sr, 但含量上存在一定的差异。 根据XRF法检测结果进行快速、 准确稀释茶样用于ICP-MS法对比测定金属元素, 优化样品前处理方法以满足痕量检测要求。 对比发现当测定Ca, Mg, Al, Fe, Mn和Zn金属元素时, 相关性系数R2在0.824 8~0.892 8, 趋势线斜率在0.806 0~0.944 9, XRF法和ICP-MS法的可比性较好, 说明检测这六种元素采用这两种方法皆适合。 同1份安溪铁观音茶样采用XRF法的相对标准偏差皆<6.0%, ICP-MS法的相对标准偏差皆<3.0%。 相对于ICP-MS法, XRF法前处理更简单, 耗时少, 因此需低成本、 快速、 简便检测茶样中的Ca, Mg, Al, Fe, Mn和Zn元素含量时, 可选择XRF检测法。 采用ICP-MS检测出的K, Ca, Mg, Al, Fe, Mn, Rb, Zn, Na和Sr金属元素进行逐步判别分析, 通过建立Fisher判别模型对安溪县和华安县铁观音茶样实现有效区分, 模型建立的判别函数的产地检验判别率为96.7%, 交叉检验判别率为96.7%, 对测试样品的识别正确率为100%。 ICP-MS法检测金属元素结合逐步判别-Fisher判别分析, 对安溪县和华安县铁观音茶样产地溯源具有较强的可行性。
铁观音茶 X射线荧光光谱技术 电感耦合等离子体质谱法 元素分析 逐步判别分析 Tieguanyin XRF ICP-MS Elemental analysis Stepwise discriminant analysis 
光谱学与光谱分析
2022, 42(10): 3124
作者单位
摘要
1 南京航空航天大学材料科学与技术学院核科学与技术系, 江苏 南京 211106
2 兰州大学核科学与技术学院, 甘肃 兰州 730000
在合金材料的生产过程中, 不同金属元素的含量改变对产品的性能以及可靠性有重要的影响, 通过在线检测技术能够对产品中不同元素含量进行实时分析, 从而指导其工业生产过程, 提高产品质量。 目前常规的无损检测方法受限于分析深度, 无法对样品内部成分进行分析, 从而影响测量结果的准确性。 瞬发伽马中子活化分析(PGNAA)技术是一种高灵敏度、 多元素同时分析的无损检测技术, 可以对大块样品进行快速分析。 针对PGNAA技术在大体积金属样品检测的可行性进行研究, 通过测量快中子与样品发生非弹性散射反应激发的伽马射线对样品成分进行分析。 搭建了一套测量系统, 包括D-T中子发生器, 中子反射体, 中子准直体, 高纯锗(HPGe)探测器及探测器屏蔽防护。 首先, 对Fe, Ti, Cr, Ni和Cu等5种金属元素进行了分析研究。 对不同质量下的样品进行测量, 通过伽马能谱处理软件GAMMAFIT对HPGe探测器测量到的特征伽马峰进行拟合, 获得全能峰的净面积。 分析全能峰净面积与样品质量之间的响应, 对探测器的探测效率变化造成的非线性响应进行修正, 得到不同元素的校准曲线, 结果显示各元素修正后的校准曲线均具有良好的线型关系。 对不同元素的质量检测限进行分析, 不同金属元素的质量检测限分别为Fe(44 g), Ti(25 g), Cr(33 g), Ni(108 g)和Cu(72 g)。 利用测量系统对不锈钢合金样品中的Fe和Cr元素含量测量开展了研究, 通过测量标准样品建立了Fe和Cr元素的定标曲线, 并对未知样品进行了测量分析。 同时与X射线荧光光谱(XRF)测量结果进行了对比分析, 结果表明两种方法的Fe元素和Cr元素测量值偏差分别为4.08%和2.97%。 研究结果表明, 利用PGNAA技术可以对多种金属元素和合金样品进行测量分析, 为后续其他金属样品的检测奠定了研究基础。
瞬发伽马中子活化分析 大块金属样品 元素分析 中子发生器 PGNAA Bulk metallic samples Element analysis Neutron generator 
光谱学与光谱分析
2022, 42(6): 1928
李雪萍 1,2,3曾强 1,2,3
作者单位
摘要
1 新疆大学资源与环境科学学院,新疆 (乌鲁木齐 ) 830046
2 新疆大学干旱生态环境研究所,新疆 乌鲁木齐 830046
3 新疆大学绿洲生态教育部重点实验室,新疆 乌鲁木齐 830046
煤结构是各类煤相关研究的微观基础, 光谱分析作为煤结构研究的重要方法被广泛应用, 其在煤结构研究中的进展对光谱分析方法的普及、 应用和发展有重要意义。 光谱分析方法研究煤结构已成为煤化工领域使用的常规方法, 能够快速无损检测, 对煤分子结构的破坏小, 可为不同环境条件下煤物理化学性质的变化提供有效的检测手段。 从光谱分析在煤质、 大分子结构、 煤中元素三个方面介绍光谱分析方法, 主要对傅里叶变换红外光谱(FTIR)、 Raman光谱分析、 核磁共振谱(NMR)进行综述介绍, 阐明其在煤结构研究中的发展历史、 应用的关键研究结果及其意义。 综合国内外煤结构研究中的多种光谱分析方法及应用现状发现: 目前研究并没有彻底解决煤结构特征及性质变化的问题, 缺乏对煤结构光谱特征信息共性的总结, 未能形成煤中官能团和元素的不同光谱信息数据库, 存在光谱特征峰与煤结构信息不对等的问题, 即在某波长存在特征峰但无法与煤中官能团匹配, 或煤官能团受元素组成、 键能等影响对多波长产生响应的问题。 现阶段对原煤自然状态下结构的研究已经不能满足煤应用中产生的问题, 单一的光谱分析方法不能全面分析煤结构特征, 且对影响煤结构光谱特征变化因素的研究较少, 尤其是煤样的前处理和煤在萃取等过程中, 前处理液和萃取剂对煤光谱特征的影响。 展望光谱分析在煤结构的研究中可以从以下几方面入手: 光谱分析与其他方法的联用以综合描述煤结构, 如化学方法、 高分辨率透射电镜(HRTEM)、 扫描轨道显微镜(STM)、 质谱(MS)等方法的联用, 定性、 定量全面分析煤结构特征; 多种条件下煤结构及光谱特征, 现阶段应利用光谱分析方法研究煤在多种条件下的结构特征及性质变化, 解决煤在实际应用中的问题。 如对煤进行氧化、 氢化、 热解、 燃烧、 低温、 液化、 汽化等处理, 分析过程变化和产物特征, 有助于推测母体煤的结构, 了解煤的性质, 控制煤物理化学过程变化中的产物, 获取煤的精细化学品; 煤光谱分析特征信息库建立, 网络大数据背景下建立煤光谱分析特征信息库及可视化数据查询平台, 实现多条件模拟假设, 演示和探索煤结构在不同条件下的动态变化, 利用人工智能、 云计算方法实现煤各类光谱数据的处理分析, 增强光谱数据信息挖掘, 提升数据有效性和实用性。
光谱分析 煤结构 煤质分析 元素分析 Spectral analysis Coal structure Coal quality analysis Element analysis 
光谱学与光谱分析
2022, 42(2): 350
作者单位
摘要
西安电子科技大学 物理与光电工程学院,西安 710071
在冶金工业、核工业、深空探测等领域,受限于高温、强辐射等人员无法达到的极端环境限制,亟需一种可快速准确进行物质成份分析的远距离非接触式探测手段。远程激光诱导击穿光谱技术是一种结合激光远距离传输与控制以及弱光信号采集来获取目标材料物质成份信息的一种技术手段,可以实现极端环境下物质的非接触式远距离探测。本文系统介绍了远程激光诱导击穿光谱系统的光学系统结构,以及不同结构远程激光诱导击穿光谱装置的性能特点及其面临的技术瓶颈。针对远程激光诱导击穿光谱技术探测灵敏度与探测距离受限、光谱信息受限等问题,还介绍了国内外常用的远程激光诱导击穿光谱信号增强方法以及激光诱导击穿光谱与拉曼光谱结合等技术方法。最后简要总结了远程激光诱导击穿光谱技术在爆炸物探测、核工业、深空探测等几个典型领域的应用,展望了其在未来的发展。
激光诱导击穿光谱 遥感 等离子体 元素分析 LIBS Remote sensing Plasma Composition analysis 
光子学报
2021, 50(10): 1030001
作者单位
摘要
以16年长期定位试验为基础, 探讨不同比例有机无机肥配施对土壤腐殖质特征的影响。 通过分离纯化腐殖质中的胡敏酸(HA)和富里酸(FA)组分, 并利用元素分析、 红外光谱和核磁共振研究分析了F1(70%化肥+30%有机肥)、 F2(50%有机肥+50%化肥)和F3(100%有机肥)三种施肥方式下的HA和FA含量及结构变化。 结果表明, F3对于提升HA和FA含量的效果优于F1和F2处理, 说明有机肥的施用量越高, 土壤腐殖质组分的含量就越高。 元素分析表明, 不同配比的有机无机肥对HA和FA各元素含量及原子比影响不同。 F2和F3都提高了HA的缩合度, 降低了氧化度和极性, 其中F3的效果更加明显; 有机肥的施用还能促进HA中含氮化合物的形成, 并且在F2中的效果最好; 有机肥的施用同样提高了FA的缩合度而降低了氧化度和极性并促进了含氮化合物的形成, 尤其在F2处理中尤为明显。 腐殖质红外光谱分析表明, 与F1相比, F2和F3提高了HA中脂肪族化合物、 碳水化合物物质的含量, FA的羧基基团、 脂肪基团含量也增加, 且在F3处理中表现最为显著; F2处理则降低了HA中脂肪烃物质的含量, FA中的碳水化合物则达到最高。 13C核磁共振波谱分析显示, 在三种处理中, 有机肥的施用提高了HA和FA的脂化度而降低其芳化度, 其中F2处理中HA官能团变化更加显著, FA在F3处理中则变化更加明显。 综上所述, 有机肥显著提高了土壤腐殖质组分含量, 并且提高了HA和FA的脂化度降低其芳化度, 但是不同用量有机肥下HA和FA的形成机制不同。
有机肥 无机肥 胡敏酸 富里酸 红外光谱 元素分析 固态13C核磁共振 Organic fertilizer Inorganic fertilizer Humic acid Fulvic acid Infrared spectroscopy Elemental analysis Solid 13C-NMR 
光谱学与光谱分析
2021, 41(2): 523
作者单位
摘要
1 南京信息工程大学气象灾害与与评估协同创新中心, 中国气象局气溶胶与云降水重点实验室, 教育部气象灾害重点实验室, 江苏 南京 210044
2 江苏省大气海洋光电探测重点实验室(南京信息工程大学), 江苏省大气环境与装备技术协同创新中心, 江苏 南京 210044
3 江苏省气象探测中心, 江苏 南京 210000
4 上海卫星工程研究院, 上海 201109
褐煤是我国现阶段的主要用煤, 但因为其较低的煤化程度, 使用时会产生污染环境的二氧化碳和黑灰, 而且烟尘中含有的金属离子会危害人体健康, 所以开展对褐煤烟尘的研究非常有意义。 而激光诱导击穿光谱技术(LIBS)具有快速、 多元素同时分析的特点, 适合用于煤烟的原位在线探测。 实验制备了含铅浓度不同的三种褐煤样本(O, H, L), 其中O为原始无铅样本, 利用LIBS对褐煤及煤烟进行原位在线探测。 实验仪器主要由激光器, 反射镜, 聚焦透镜, 触发装置, 载物平台和分析系统组成。 用高纯度铅块校准实验中的的波长漂移。 分析了褐煤样本O, H, L的元素成分。 发现褐煤O中含有C, Si, Fe, Mg, Al, Ca, Sr, Na等元素, 同时检测到空气中的元素N, O, Hα和Hβ等, 且含铅褐煤光谱中多出了8条铅元素的谱线, 最后给出了褐煤中主要元素的光谱鉴别表。 然后使用447 nm的连续光点燃褐煤, 将1 064 nm的脉冲光聚焦在煤烟上, 对褐煤煤烟进行了原位在线检测。 发现煤烟中含有Mg, Ca, Al, Sr, Pb等金属离子, 说明了褐煤中的一些金属离子会随着煤烟排放到空气中并危害人体健康。 经褐煤及煤烟的光谱比较, 发现煤烟的信噪比更差, 且所有元素的谱线强度都比在褐煤中弱很多, 另外发现在烟尘中碳原子谱线的相对强度是所有元素中最高的(无明火), 这说明LIBS可以有效探测CO2。 分析了实验中的CN分子谱, 给出了CN分子的具体波长, 并利用LIFBASE软件拟合了CN分子的转动温度和振动温度, 分别为6 780和7 520 K。 最后对样本H和L两种煤烟中的铅浓度进行分析, 选取参考线(Ca Ⅱ 363.846 nm)归一化之后比较了铅元素在363.956, 368.346和405.780 nm处的相对强度, 发现这三条特征谱线的相对强度与自身实际所含的铅浓度呈很好的线性关系, 验证了LIBS技术应用于煤烟中重金属元素半定量分析的可行性。
激光诱导击穿光谱 褐煤燃烧 原位在线检测 重金属 元素分析 Laser-induced breakdown spectroscopy (LIBS) Lignite combustion In situ on-line detection Heavy metal Elemental analysis 
光谱学与光谱分析
2021, 41(3): 954
作者单位
摘要
焚烧秸秆对大气环境具有很大的危害, 燃烧过程中重金属元素会随着烟尘飘散到空气中, 严重污染大气环境, 探测随秸秆燃烧烟尘扩散到空气中的重金属元素具有重要意义。 采用激光诱导击穿光谱(LIBS)技术对秸秆燃烧烟尘进行原位在线探测, 对其中的重金属元素进行在线分析。 实验仪器由Nd:YAG单脉冲激光器(波长1 064 nm, 激光能量为290 mJ·pulse-1, 重复频率10 Hz), Avantes光谱仪(AvasSpec-ULS2048-4Channel-usb2.0, 光谱检测范围200~890 nm, 分辨率0.13 nm)、 反射镜、 聚焦透镜(焦距为150 mm)、 时序发生器组成, 光谱仪的延迟时间设定为6 μs。 激光器发射出的激光经反射镜与聚焦透镜聚集到烟尘中, 并产生高温等离子体, 经光谱仪采集信号获得LIBS光谱。 实验样品为华东地区成熟水稻茎叶。 首先对空气进行LIBS探测, 可以从光谱图中观察到N, O, Hα和Hβ等元素, 同一实验条件下再对烟尘进行LIBS探测并得到光谱图, 观察到秸秆燃烧产生的烟尘中含有C, Mg, Ca, Mn, Na和K等元素, 其中Mn为重金属元素, 验证了LIBS探测秸秆燃烧烟尘中重金属元素的可行性。 在烟尘光谱图中同时观察到CN分子(自由基)谱线的存在, 秸秆燃烧过程中产生的CO2分子在激光的辐射下与空气中的N2发生反应生成CN分子(自由基), 在同一条件下对激光焦点进行人工吹气, 得到的光谱图中同样探测到了CN分子谱线。 利用LIFEBASE软件拟合烟尘中的CN分子谱线, 获得拟合数据, 同时得到CN分子的振动温度为8 000 K, 转动温度为7 700 K。 制备含铅的秸秆样品, 将相同质量的两份样品分别浸泡在不同浓度的乙酸铅溶液中, 并进行烘干处理。 对两种样品进行LIBS探测并得到光谱图, 通过对比含铅秸秆样品与原始秸秆样品, 含铅秸秆样品的光谱图中多出波长为357.261, 363.898, 368.370, 373.945和405.747 nm的五条谱线, 与NIST数据库对比发现五条谱线都为铅元素的光谱线。 以CaⅡ(393.329 nm)谱线为参考线对含铅样品的光谱图进行归一化处理, 观察到含铅浓度高的样品光谱图中铅的特征峰值强度比含铅浓度低的样品光谱图中铅的特征峰值强度高, 验证了激光诱导击穿光谱技术对秸秆燃烧烟尘中重金属元素的半定量分析的可行性。
激光诱导击穿光谱 秸秆燃烧 重金属 元素分析 Laser-induced breakdown spectroscopy (LIBS) Straw burning Heavy metal Elemental analysis 
光谱学与光谱分析
2020, 40(10): 3292
作者单位
摘要
四川省疾病预防控制中心理化检验所, 四川省中毒理化检测医学重点实验室, 四川 成都 610041
大气细颗粒物(PM2.5)粒径小, 比表面积大, 容易吸附金属、 有机物、 病毒、 细菌等污染物而成为有毒有害物质的载体和反应体, 严重影响空气质量, 现已成为当前大气环境的首要污染物, 而其中金属及类金属由于具有非降解性和滞后性, 严重污染自然环境, 当PM2.5被吸入人体内, 有毒有害金属及类金属元素由呼吸道沉积在肺泡, 而后转移至血液及其他器官中, 可对人体正常生理机能产生影响, 造成身长发育缓慢, 甚至导致癌症等病变, 进而严重威胁人体健康。 近年来, 我国许多城市也相应开展了PM2.5中金属元素污染特征、 分布水平及源解析的研究。 选择有效采集PM2.5中的金属及类金属元素的方法, 消解效率较高的前处理方法以及操作简便、 快速、 准确、 灵敏和抗干扰能力强的检测方法已成为当前PM2.5中元素分析的研究重点和热点领域。 而电感耦合等离子质谱(ICP-MS)法测定PM2.5中金属及类金属元素, 不仅能满足多元素同时测定, 而且动态线性范围宽, 检出限低, 灵敏度高, 国内外学者们已进行了大量的研究工作, 形成了比较完善的研究体系。 该分析方法可为PM2.5中各金属及类金属组成及来源、 时空分布、 形态及相应同位素分析、 生理毒性和转化机制等方面的研究工作提供强有力的数据支持。 主要对ICP-MS测定PM2.5中金属及类金属元素的分析方法进行了综述, 着重对其采样滤膜选择、 前处理方法及其消解液的选择进行了详述, 重点阐述了ICP-MS联用技术在PM2.5金属和类金属元素形态及同位素分析中的应用研究, 总结了各种采样滤膜、 前处理方法和消解液及检测联用技术各自的优缺点和选择依据, 并对该领域未来存在的挑战和研究方向提出了展望, 为进一步发展更简便、 快速、 高灵敏且选择性好的PM2.5元素分析中ICP-MS检测技术提供参考。
电感耦合等离子质谱 大气颗粒物PM2.5 元素分析 样品采集 前处理技术 形态分析 ICP-MS PM2.5 Elemental analysis Sampling Pretreatment method Speciation analysis 
光谱学与光谱分析
2020, 40(8): 2373
李明 1,2李颜冰 3张翘楚 2史玉涛 2[ ... ]赵迎 1,2
作者单位
摘要
1 钢铁研究总院, 北京 100081
2 钢研纳克检测技术股份有限公司, 北京 100094
3 益阳职业技术学院, 湖南 益阳 413055
基于电荷耦合器件(CCD)的火花光谱仪是一种用于元素成分分析的光谱仪, 其输出信号是高频的CCD有效信号和低频的背景噪声叠加在一起的复合信号, 火花光谱的有效信息主要集中在信号的较高频段, 很容易被背景噪声淹没和干扰, 因此获取完整有效的光谱信息, 需要对信号进行有效处理。 经验模态分解(EMD)方法可以自适应分析信号, 不需要设置参数, 但存在模态混叠的问题, 信号中不同频率的成分可能会混淆; 集合平均经验模态分解(EEMD)成功地解决了EMD方法中模态混叠的问题, 能更加清晰地将信号中的不同频率成分分解出来, 因此更加适合光谱信号的研究。 使用火花光谱仪对不锈钢标准样品(选取短波段、 中波段和长波段代表性元素碳C、 锰Mn、 镍Ni、 铬Cr和铝Al)进行采集, 获得了标准样品的火花光谱原始信号。 通过EEMD方法进行自适应的分析和处理, 每个CCD信号均获得了11阶固有模态函数(IMF), 根据信号的幅频特性, IMF1-IMF2表征为特征信号部分, 最后一阶IMF11为背景噪声成分。 通过重构上述处理信号, 结合基于连续小波变换的惩罚最小二乘法进行了二次处理, 获得了最终处理后的信号。 将处理后的信号导入仪器处理软件中, 获得了碳、 锰、 镍、 铬和铝元素的含量梯度曲线, 结果显示采用EEMD方法处理的信号和原处理方法效果相当, 但省去了额外采集空白噪声段的环节, 大大节省了分析的时间, 从而提高了仪器的运行效率。
集合平均经验模态分解方法 电感耦合信号 火花光谱 元素分析 Ensemble empirical mode decomposition method Chargy coupted device signal Spark spectrum Element analysis 
光谱学与光谱分析
2020, 40(6): 1923
钟奇秀 1,2,3,*赵天卓 1,2,3李欣 1,2,3连富强 1,3[ ... ]樊仲维 1,2,3
作者单位
摘要
1 中国科学院空天信息创新研究院, 北京 100094
2 中国科学院大学光电学院, 北京 100049
3 国家半导体泵浦激光工程技术研究中心, 北京 100094
4 北京国科世纪激光技术有限公司, 北京 102211
交叉验证是用于验证模型性能的一种统计分析方法, 可避免由训练集与测试集重合引起的过拟合。 进行交叉验证时通常使用交叉验证均方根误差(RMSECV)的均值来表征多元素的分析准确度。 但对于激光诱导击穿光谱(LIBS)用于多元素分析的情况, 发现各元素的RMSECV与其在样品中的浓度范围可近似用线性关系表述, 由于不同元素在样品集中的浓度范围差异很大, 不同元素之间的RMSECV差异较大, 实验中C与Cr在样品集中的浓度范围差异为28.11倍, 其RMSECV差异达到8.96倍。 发现RMSECV均值对于个别元素过于灵敏, 在数据优化过程中, 可能导致其不能反映大多数元素的分析准确度变化趋势。 为减小RMSECV均值对不同元素的灵敏度差异, 更全面地表征多元素的分析准确度, 提出了多元素的RMSECV标准化方法, 即将各元素的RMSECV与该元素在样品集中的浓度范围相除, 并引入标准化交叉验证均方根误差(SRMSECV)的概念。 LIBS检测受测量条件波动(如激光脉冲能量、 振动等)等不确定因素的影响, 会引入异常光谱, 并对分析准确度产生负面影响。 为通过滤除异常光谱来提高多元素分析准确度, 利用光谱面积筛选对光谱数据进行预处理, 以同一样品下各张光谱的面积中位数为中心, 选定某一光谱面积区间, 舍弃该区间之外的光谱, 并使用余下光谱用作定量分析。 在此基础上, 通过对0.5 Pa真空环境下的10块Ni基合金中的14种元素成分进行的多谱线内标法定量分析展开实验验证。 标准化后各元素RMSECV的相对标准差(RSD)由68.7%减小至48.9%, 元素间的RMSECV的最大差异由8.96倍降低至3.93倍, 表明SRMSECV均值能够较全面表征多元素的分析准确度, 从而有利于实现定标曲线的全自动优化。 在优化面积筛选跨度下, 各元素定标模型的决定系数(R2)均值与SRMSECV均值都得到一定程度的改善, 证明光谱面积筛选对于提高多元素分析准确度的价值。
激光诱导击穿光谱 标准化交叉验证 光谱面积筛选 元素分析 Laser-induced breakdown spectroscopy Standardized cross-validation Spectral area screening Multivariate analysis 
光谱学与光谱分析
2020, 40(2): 622

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!