作者单位
摘要
盐城师范学院物理与电子工程学院, 江苏 盐城 224007
在系统装调过程中引入的倾斜误差会影响衍射光学元件(DOEs)的衍射效率。入射角度的增大也会影响DOEs的衍射效率。基于多层衍射光学元件(MLDOEs)的相位延迟表达式,提出了斜入射时衍射效率和带宽积分平均衍射效率(BIADE)与倾斜误差的理论关系模型。分析了斜入射时倾斜误差对衍射效率和BIADE的影响。建立了工作在一定入射角度范围内的复合BIADE与倾斜误差的关系。当工作在8~12 μm波段的MLDOEs的入射角度范围为0°~20°时,若要实现98%的复合BIADE,倾斜误差角度应控制在0.25°范围内。进一步分析了存在偏心误差和相对微结构高度误差等其他误差因素时,要达到一定的复合BIADE,所需对应的倾斜误差大小。该方法和结论可以用于指导混合光学系统中MLDOEs的设计与装调。
衍射光学 衍射效率 倾斜误差 斜入射 多层衍射光学元件 
光学学报
2020, 40(8): 0805001
毛珊 1,2赵建林 1,2,*
作者单位
摘要
1 西北工业大学理学院陕西省光信息技术重点实验室, 陕西 西安 710072
2 西北工业大学理学院超常条件材料物理与化学教育部重点实验室, 陕西 西安 710072
基于等效介质理论和多层衍射元件的本体相位延迟,考虑增透膜相位调制的影响,对多层衍射光学元件的表面微结构参数进行优化;采用优化设计方法分析应用于可见光波段镀有增透膜的多层衍射光学元件。结果表明:优化设计方法在保证增透膜物理作用的前提下,实现了在设计波长处的衍射效率为100%以及在宽波段内具有高多色光积分衍射效率;该方法弥补了传统多层衍射光学元件的设计缺陷,完善了多层衍射光学元件的设计理论,为混合成像系统的设计提供了参考。
光学设计 增透膜 多色光积分衍射效率 多层衍射光学元件 入射角度 衍射效率 
光学学报
2019, 39(3): 0305001
作者单位
摘要
盐城师范学院新能源与电子工程学院, 江苏 盐城 224051
为了验证多层衍射光学元件的衍射效率随入射角度的理论变化关系,设计并制作了一个含有多层衍射光学元件(MLDOEs)的光学系统。当次级衍射光通过孔径光阑由探测器接收时,为保证衍射效率的测量精度,提出了一级衍射能量的修正方法。利用搭建的双光路装置,在0°~30.6°范围内对该多层衍射光学元件进行了衍射效率的测量。针对设计波长532 nm,选取7个入射角度测量衍射效率,并对测量结果进行了模拟和分析。由于存在一定的加工误差,在不同入射角度状态下实际测量得到的衍射效率比理论分析的结果低,但是实测与理论分析结果均表明,多层衍射光学元件的衍射效率随入射角的增大而下降。
衍射 衍射光学 光学测量 光学器件 多层衍射光学元件 衍射效率 
光学学报
2017, 37(2): 0205003
作者单位
摘要
长春理工大学光电工程学院, 吉林 长春 130022
基于衍射光学元件的相位延迟和衍射效率表达式,推导出了含有偏心误差的多层衍射光学元件衍射效率表达式。建立了含有偏心误差的多层衍射光学元件衍射效率的数学模型,分析了偏心误差对多层衍射光学元件衍射效率及多色光积分衍射效率的影响。以在8~12 μm 波段内的硫化锌(ZnS)和锗(Ge)为基底材料构成的多层衍射光学元件为例,其设计波长对为8.79 μm、11.11 μm,构成多层衍射光学元件的两层谐衍射元件微结构高度为78.3391 μm 、34.6076 μm,当多层衍射光学元件的环带宽度分别为500 μm 和1000 μm 时,其衍射效率达到95%以上时,偏心误差须分别控制在5.8 μm 和11.17 μm 以内。该含有偏心误差的多层衍射光学元件的衍射效率分析模型对于多层衍射光学元件的设计与加工具有重要意义。
光学器件 多层衍射光学元件 红外波段 衍射效率 偏心误差 
光学学报
2015, 35(6): 0623004
作者单位
摘要
1 浙江师范大学 信息光学研究所,浙江 金华 321001
2 浙江师范大学 光信息检测与显示技术研究省重点实验室,浙江 金华 321001
基于对多层衍射元件的衍射效率的理论分析,设计了用于头盔显示器的含有多层衍射元件的60°视场折/衍射混合目镜系统。系统在设计波段和整个视场范围内衍射效率均在90 %以上,提高了光能利用率和像面对比度。目镜的出瞳距离为22 mm,出瞳直径为8 mm。调制传递函数(MTF)在25 lp/mm时全视场均在0.38以上,满足VGA分辨率要求。目镜中畸变为4.8%,垂轴色差最大为10 μm。整个系统结构紧凑,镜头总长26.8 mm,最大直径16 mm,全系统质量仅8 g,实现了光学系统的轻小型化。
光学 光学设计 头盔目镜 折/衍射混合 多层衍射光学元件 optics optical design eyepiece for head-mounted display hybrid diffractive/refractive multilayer diffraction optical element 
应用光学
2013, 34(3): 402
作者单位
摘要
1 浙江师范大学 信息光学研究所, 浙江 金华 321001
2 浙江师范大学 浙江省光信息检测与显示技术研究重点实验室, 浙江 金华 321001
设计了一种含有三层衍射光学元件的60°视场头盔显示目镜, 并给出了系统优化过程和结果.在整个视场和设计波段范围内三层衍射光学元件的衍射效率均在90%以上, 提高了系统的光能利用率和像的对比度.此目镜光学系统的出瞳直径为8 mm, 出瞳距离为22 mm.整个系统重量仅为8 g, 总长度为26.8 mm, 结构轻便紧凑, 具有良好的光学性能, 满足头盔显示目镜的使用需求.
光学设计 头盔目镜 折/衍射混合 多层衍射光学元件 Optical design Eyepiece for head-mounted display Hybrid diffractive/refractive Three-layer diffraction element 
光子学报
2013, 42(3): 266
作者单位
摘要
浙江师范大学信息光学研究所, 浙江 金华 321001
提出一种新颖的多层衍射元件(MLDOE),由具有不同折射率和色散性质的光学材料构成,第一层和最后一层为高折射率低色散和低折射率高色散光学材料的组合,中间填充层为阿贝数较小的光学塑料。此MLDOE在最大光束全视场角为110°情况下,设计波段内的各个波长的衍射效率高达90%以上,可有效提高折衍混合光学系统的能量利用率,提高成像质量。
光学设计 衍射光学 多层衍射光学元件 衍射效率 
中国激光
2012, 39(5): 0516001
作者单位
摘要
长春理工大学光电工程学院, 吉林 长春 130022
以衍射光学元件相位延迟表达式为理论基础,采用光学材料的折射率柯西色散近似公式,研究并得到了多层衍射光学元件的相位延迟与材料的关系,以及衍射效率与设计波长的关系。在400~700 nm可见光波段,以聚甲基丙烯酸酯和聚碳酸酯为基底材料,由柯西色散近似公式设计的多层衍射光学元件的最大带宽积分平均衍射效率为99.62%,相应的设计波长为440.5 nm和605.5 nm。用该组设计波长和不同设计方法确定的设计波长,对多层衍射光学元件的衍射效率和带宽积分平均衍射效率进行了分析,得到了相应的衍射效率分布误差,进一步揭示了多层衍射光学元件的衍射效率与材料无关,只与设计波长有关。
衍射 多层衍射光学元件 衍射效率 柯西色散近似公式 
光学学报
2011, 31(6): 0623002
作者单位
摘要
长春理工大学光电工程学院, 吉林 长春 130022
以衍射光学元件(DOE)相位延迟表达式为基础,研究并给出了多层衍射光学元件(MLDOE)的带宽积分平均衍射效率(BIADE)与相应设计波长关系的表达式。在MLDOE的基底材料确定后,由所给出的表达式可以得到最大BIADE及相应的设计波长,由此可以实现MLDOE的BIADE最大化、精确化设计。在0.4~0.7 μm可见光波段,以聚甲基丙烯酸酯和聚碳酸酯为基底材料,通过优化得到最大BIADE为99.3%,相应的设计波长为0.435 μm和0.598 μm,各层谐衍射元件(HDE)的微结构高度分别为16.460 μm和12.813 μm,所得到的BIADE比以0.4 μm和0.7 μm为设计波长时高4%。
衍射光学 多层衍射光学元件 衍射效率 带宽积分平均衍射效率 
光学学报
2010, 30(10): 3016
作者单位
摘要
长春理工大学 光电工程学院,长春 130022
讨论了多层衍射光学元件的光学成像性质.给出了优化设计多层衍射光学元件最大光栅厚度的方法,分析了构成多层结构的每块单层衍射元件的衍射效率对整体衍射效率的贡献作用.在0.436~0.656 μm的可见光波段,多层衍射光学元件最低衍射效率可达到98%以上,克服了单层衍射元件偏离设计波长后衍射效率显著下降的缺点,改善了宽波段衍射效率.将多层衍射光学元件应用在折、衍射混合光学系统中能够明显提高系统的成像质量,同时使得光学系统体积减小,重量减轻,并且在某些系统中可以避免使用昂贵的特殊材料,从而可以降低光学系统的成本价格.
衍射光学 多层衍射光学元件 衍射效率 光学设计 Diffractive optics Multi-layer diffractive optical elements Diffractive efficiency Optical design 
光子学报
2009, 38(3): 694

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!