作者单位
摘要
长春理工大学 理学院 光学系, 长春 130022
为了研究行间转移型彩色面阵CCD在毫秒脉冲激光辐照下的损伤效果, 采用实验研究的方法, 测量了不同能量密度的激光作用下, CCD表面中心点温度、受损区域面积、深度及CCD内部复位时钟信号和阻抗值的变化, 结合CCD输出图像中出现不可恢复的焦斑及黑白雪花现象, 对彩色面阵CCD在毫秒脉冲激光作用下的损伤效果进行了分析。结果表明,在毫秒脉冲激光的辐照作用下,行间转移型彩色面阵CCD内部结构会产生不同程度的烧蚀, 当能量密度达到23.49J/cm2时, 烧蚀深度直达基底层, 致使CCD内部信号传输通道断开, 漏电流增加, 最终造成CCD无信号输出, 完全损坏。该研究对CCD探测器在强激光作用下的损伤效果研究是有帮助的。
激光物理 形貌损伤 热应力 毫秒脉冲激光 laser physics morphological damage thermal stress CCD CCD millisecond pulsed laser 
激光技术
2017, 41(5): 632
作者单位
摘要
长春理工大学 理学院, 吉林 长春 130022
开展了毫秒脉冲激光辐照单晶硅的实验研究, 基于马赫-曾德尔干涉技术测量了毫秒脉冲激光与单晶硅相互作用过程中的在线应力损伤。用COMSOL Multiphysics有限元仿真软件建立了毫秒脉冲激光辐照单晶硅的数值仿真模型。从理论和实验两方面探讨了毫秒脉冲激光与单晶硅作用时, 相同脉宽不同能量密度下应力场随时间的演变规律。进一步研究了干涉条纹的处理方法, 基于传统x轴投影法提出了用45°投影法来计算材料各方向上的应变, 并对两种处理方法得到的实验结果进行了对比。结果显示: 与仿真结果相比, x轴投影法实验结果的误差为9.5%~29.3%, 而45°投影法实验结果的误差为0.1%~22.6%, 表明用马赫-曾德尔干涉法测量激光辐照单晶硅产生的在线应力损伤时, 采用45°投影法计算材料各方向上的应变结果更为准确。该实验和计算方法为单晶硅在线应力损伤的研究提供了理论和实验上的指导。
激光与物质相互作用 单晶硅 毫秒脉冲激光 在线应损伤力 马赫-曾德尔干涉术 interaction of laser beam and material monocrystal silicon ms pulse laser real-time stress damage Mach-Zehnder interferometry 
光学 精密工程
2017, 25(5): 1395
作者单位
摘要
长春理工大学理学院, 吉林 长春 130022
为了测量毫秒脉冲激光辐照非透明材料的在线应力及应力应变演化的过程,基于光学干涉理论,针对大功率固体激光器与材料的相互作用,采用马赫-曾德尔干涉的方法,得到了材料损伤的干涉条纹。通过对干涉条纹变化的分析与处理,可以得到材料在线应力及其演化过程。基于光学干涉理论,选择单晶硅作为实验材料,建立comsol仿真模型,并在理论及仿真的基础上开展实验。实验与仿真的r(x)方向误差在11.7%~33.91%之间,z(y,z)方向误差在20.25%~31.34%之间,说明用马赫-曾德尔干涉的方法测量非透明材料的应力具有可行性。实验研究为激光与非透明材料作用过程中在线应力损伤及演变过程研究提供了一个新的方法。
相干光学 毫秒脉冲激光 单晶硅 热应力损伤 马赫-曾德尔干涉 在线应力 
光学学报
2016, 36(2): 0219002
作者单位
摘要
1 长春理工大学 理学院, 长春 130022
2 南京理工大学 理学院, 南京 210094
3 中国兵器科学研究院, 北京 100089
针对波长0.53 μm的毫秒脉冲激光辐照GaAs的表面热分解损伤问题,建立了二维轴对称热传导模型,在考虑材料的热物性参数随温度变化的基础上,采用有限元法模拟了材料的瞬态温度场,得到了温度场分布特征及其随时间的变化规律,给出了材料表面发生热分解损伤阈值曲线。数值结果表明:毫秒脉冲激光对GaAs作用时,热传导影响着激光作用全过程,对应的损伤机理主要为热损伤; 在激光作用下,被作用表面中心处温度最高,并且首先发生热分解损伤; 随着作用激光能量密度的增加,GaAs表面发生热分解损伤的时刻不断提前。
激光损伤 毫秒脉冲激光 瞬态温度场 热分解 laser-induced damage millisecond pulse laser transient temperature field thermal decomposition GaAs GaAs 
强激光与粒子束
2012, 24(10): 2287

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!