作者单位
摘要
西北农林科技大学机械与电子工程学院, 陕西 杨凌 712100
植物非生物胁迫是指对植物产生不利影响的非生物因素, 非生物胁迫威胁植物发芽、 生长、 发育和繁殖, 是阻碍农作物高效栽培和农业可持续发展的主要因素。 植物胁迫精准管理和抗逆植物育种是缓解和解决非生物胁迫的有效途径, 其中植物表型分析是一个不可或缺的环节, 但是传统滞后的如人工、 破坏式表型测量方法很难满足高通量表型分析的需求, 制约着植物非生物逆境治理的精度和现代植物育种的效率。 高通量植物表型分析技术旨在实现植物复杂性状的快速、 自动、 无损地获取与分析, 能实时原位监测植物受胁迫状态与程度, 指导胁迫治理措施和资源精准投入, 可以为优良抗逆植物品种高通量筛选鉴定提供解决方案、 能为植物抗逆基因解析与定位、 植物遗传变异分析等提供大数据支撑。 由于成像光谱技术能够实时、 非接触、 高效地测量植物结构形态、 生理生化等多样化的表型, 在高通量植物表型分析中表现出良好的潜力, 近年来在植物精准种植和现代植物育种中得到广泛研究与应用。 主要阐述可见光成像(RGB Imaging)、 多光谱成像(MSI)、 高光谱成像(HSI)、 叶绿素荧光成像(ChlFI)、 多光谱荧光成像(MFI)、 热红外成像(TIRI)高通量表型分析技术在植物非生物胁迫表型分析中的研究进展以及评估分析其发展趋势; 首先简单介绍了不同成像光谱的技术特点以及在植物表型分析中的应用差异和高通量分析流程; 其次总结了近年来基于成像光谱技术高通量分析植物非生物胁迫表型的部分研究和应用, 介绍范围从植物胁迫监测、 抗逆植物品种筛选鉴定、 植物遗传分析3个方面出发, 主要涉及植物干旱、 温度、 盐害、 养分胁迫以及其他非生物逆境。 最后探讨了上述成像光谱技术在植物非生物胁迫表型高通量分析的机遇和其面临的挑战。
成像光谱 生物胁迫 高通量表型分析 精准管理 植物育种 Imaging spectroscopy Abiotic stress High-throughput plant phenotyping Precision farming Plant breeding 
光谱学与光谱分析
2020, 40(11): 3365
岑海燕 1,2,*姚洁妮 1,2翁海勇 1,2徐海霞 1,2[ ... ]何勇 1,2
作者单位
摘要
1 浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
2 农业农村部光谱检测重点实验室, 浙江 杭州 310058
作物优良品种选育是实现作物优质高产的关键。 现代育种方法需要获取植株的大量表型信息, 最终选育出性状稳定的优良品种。 近年来, 高通量植物表型分析技术因其快速、 无损、 高效等优势, 为筛选优良作物品种提供了技术保障, 已成为农学、 工程、 计算机科学等多学科交叉研究的热点。 其中, 叶绿素荧光技术作为植物光合作用的探针, 是研究植物逆境胁迫表型的有力工具之一, 能够实现植物生物与非生物胁迫的高效分析, 加快作物优良性状的筛选。 该文旨在阐述叶绿素荧光技术的研究进展和发展趋势, 主要介绍了叶绿素荧光技术的基本原理和成像系统、 叶绿素荧光参数的分析和处理方法, 总结了在植物表型分析研究中的应用情况, 探讨了该技术目前存在的问题和改进的方法, 进一步展望了叶绿素荧光技术在植物表型分析中的应用前景。
叶绿素荧光技术 植物表型分析 生物胁迫 生物胁迫 作物育种 Chlorophyll fluorescence technique Plant phenotyping Biotic stress Abiotic stress Plant breeding 
光谱学与光谱分析
2018, 38(12): 3773
作者单位
摘要
华南师范大学生物光子学研究院激光生命科学研究所、暨激光生命科学教育部重点实验室, 广东 广州510631
逆境胁迫严重影响着全世界范围内的作物产量。为减少逆境胁迫损伤, 植物在长期的进化过程中形成了多级别(转录、转录后和翻译、翻译后)的基因表达调控应答机制。最近研究发现, 内源microRNA(miRNA)在植物逆境胁迫应答中具有重要的调节作用。在逆境胁迫发生时, 一些miRNA会表达上调, 而另一些miRNA会表达下调; miRNA正是通过下调胁迫应答过程的负调节子靶基因和上调胁迫应答过程中的正调节子靶基因, 来执行生理调控功能。通过综述miRNA在植物逆境应答中的作用, 以期全面的了解逆境胁迫调控网络。
生物胁迫 生物胁迫 营养亏缺 胁迫应答 MicroRNA microRNA abiotic stress biotic stress nutrient deprivation stress responses 
激光生物学报
2010, 19(4): 562

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!