作者单位
摘要
太原理工大学 物理与光电工程学院, 山西 太原 030024
钙钛矿量子点具有光致发光量子产率高、发光光谱可调、光谱宽度窄、缺陷容忍度高以及独特的量子限域效应等优点, 因此成为研制新型高效率发光二极管(LED)的热门材料。本文介绍了近几年基于钙钛矿量子点LED的研究最新进展。首先, 介绍了钙钛矿量子点独特的晶体结构及钙钛矿发光器件的工作原理。然后, 阐述了合成高光致发光量子产率(PLQY)量子点的方法及提高钙钛矿量子点LED效率的若干方法。最后, 分析了当前钙钛矿量子点LED所面临的挑战如不稳定性及毒性, 以及可应用在显示和照明方面的高效率LED所展现的前景。本综述为研制更高效率以及更加安全的钙钛矿量子点发光器件提供了有益的见解。
量子点 钙钛矿发光二极管 光致发光量子产率 外量子效率 电流效率 quantum dots perovskite LED photoluminescence quantum yield external quantum efficiency current efficiency 
发光学报
2021, 42(5): 650
作者单位
摘要
1 重庆邮电大学 光电工程学院 微电子工程重点实验室, 重庆 400065
2 重庆市南岸区教师进修学院, 重庆 400060
对一系列蓝光和蓝绿光器件展开研究, 发现结构为ITO/NPB(40nm)/mCP(5nm)/mCP∶FIrpic(30nm)/TPBi(2nm)/TPBi∶Ir(ppy)3(10nm)/TmPyPB(40nm)/LiF(1nm)/Al的蓝绿光器件具有最佳光电性能, 其电流效率高达38.3cd/A。基于该结构, 结合采用红色荧光染料DCJTB制备的颜色转换层实现了三原色白色有机发光二极管(White Organic Light-emitting Diode, WOLED)。结果表明, 器件性能可通过DCJTB浓度进行调控, 当其浓度为0.7%时, 实现了电流效率为23.9cd/A、色坐标为(0.35, 0.43)及色温为5121K的WOLED, 且电流密度从1mA/cm2变化到100mA/cm2, 其色坐标仅漂移(0.005, 0.003)。
白色有机发光二极管 荧光量子效率 颜色转换层 发光层 电流效率 white organic light-emitting diode fluorescence quantum efficiency color conversion layer emission layer current efficiency 
半导体光电
2019, 40(5): 620
谢嘉凤 1,*王振 1陈爱 1王培 1[ ... ]王玉婵 1
作者单位
摘要
1 重庆邮电大学 光电工程学院, 重庆 400065
2 重庆南岸教师进修学院, 重庆 400060
以DCJTB为颜色转换层, 结合双蓝色发光层有机电致发光器件制备了结构为PMMA∶DCJTB(x%)/ITO/NPB(30 nm)/mCP(5 nm)/mCP∶Firpic(8%, 30 nm)/TPBi∶Firpic(8%, 10 nm)/TmPyPB(30 nm)/Cs2CO3(1 nm)/Al(x=0.7, 1.0, 1.5)的白色有机发光器件.结果表明, 器件的效率和显示性可通过DCJTB浓度加以调控,当DCJTB浓度为1.0%时, 器件拥有最佳性能, 其最大电流效率、色坐标和显色指数分别为13.4 cd·A-1、(0.33, 0.31)和69.为进一步提高器件效率和显色性, 在发光层TPBi∶Firpic与电子传输层TmPyPB之间插入TPBi/TPBi∶Ir(ppy)3结构, 研究表明: 该插入结构能丰富器件发光颜色, 增大颜色转换层的有效吸收光量; 同时可限制激子复合区域, 提升激子利用率, 实现了器件效率和显色性能的同时提升.获得的白光器件最大电流效率和显色指数分别为17.8 cd·A-1和81, 分别提升了33%和17%, 色坐标仅漂移(0.02, 0.02).
有机半导体 白色有机发光器件 颜色转换层 电流效率 色坐标 显色指数 Organic semiconductor White organic light-emitting device Color conversion layer Current efficiency Commission Internationale de L′Eclairage Color rendering index 
光子学报
2019, 48(6): 0623002
作者单位
摘要
华侨大学 信息科学与工程学院, 福建 厦门 361021
为了改善有机电致发光器件的性能,利用CsN3作为N掺杂剂,以B3PYPPM为电子传输材料,制备了基于绿色磷光材料Ir(ppy)3的高效率有机电致发光器件。针对不同N掺杂浓度和掺杂厚度的器件进行研究,最终得到最佳N掺杂器件B,器件结构为ITO/HAT-CN(5 nm)/TAPC(70 nm)/TCTA∶Ir(ppy)3(15%,20 nm)/B3PYPPM(17 nm)/B3PYPPM∶CsN3(10%,63 nm)/Al。实验结果表明,浓度与厚度适当的N掺杂器件能有效提高器件的电流效率和功率效率。CsN3作为一种高效的N掺杂剂,与电子传输材料B3PYPPM掺杂后,有效地降低了电子的注入势垒,增加了电子注入,提高了电子迁移率,改善了电子的注入和传输能力,使载流子更加平衡,从而降低了器件的开启电压和驱动电压,有效地提高了电流效率和功率效率。最佳N掺杂器件B开启电压仅为2.1 V,最大电流效率和功率效率分别为67.0 cd/A、91.1 lm/W。值得注意的是,在1 000 cd/m2亮度下,最佳N掺杂器件B的功率效率仍能达到80.1 lm/W。
N掺杂剂 电流效率 功率效率 CsN3 CsN3 B3PYPPM B3PYPPM N-dopant current efficiency power efficiency 
发光学报
2018, 39(3): 315
作者单位
摘要
上海交通大学 电子工程系TFT-LCD关键材料及技术国家工程实验室, 上海 200240
文章采用具有电子捕捉能力的橙红色磷光材料iridium(Ⅲ)bis(2-methyldibenzo-[f,h]quinoxaline)(acetylacetonate)(Ir(MDQ)2(acac))作为超薄发光层应用于有机发光二极管中。通过对其厚度的优化, 发现当发光层厚度为0.1 nm时, 器件性能最好, 最大电流效率达到了28.1 cd/A, 明显优于采用掺杂发光层的器件。分析了发光材料的载流子捕捉作用对器件载流子平衡及器件电流效率的影响, 发现超薄发光层结构几乎不改变器件的电学特性, 不会进一步破坏器件载流子平衡, 正因如此, 大多数磷光材料都可以采用超薄发光层获得很高的效率。
有机发光二极管 超薄发光层 载流子捕捉 电流效率 OLED ultrathin non-doped EML charge-carrier trapping current efficiency 
半导体光电
2017, 38(6): 775
作者单位
摘要
1 北京交通大学 电子信息工程学院, 北京 100044
2 北京信息科技大学 自动化学院, 北京 100101
为降低量子点发光二极管(QLED)的开启电压, 提高器件性能, 利用电子传输性能良好的氧化锌(ZnO)作为电子传输层, 制备了结构为ITO/PEDOT∶PSS/poly-TPD/QDs/ZnO/Al的QLED样品。在该器件结构基础上, 采用隧穿注入和空间电荷限制电流模型仿真分析了载流子在量子点(QDs)层的电流密度。研究发现, 当ZnO厚度为50 nm时, poly-TPD的理论最优厚度为40 nm, 载流子在QDs层的注入达到相对平衡。通过测试器件的电流密度-电压-亮度-发光效率特性, 研究了空穴传输层厚度对QLED器件性能的影响。实验结果表明, 当空穴传输层厚度为40 nm时, 器件的开启电压为1.7 V, 最大发光效率为1.18 cd/A。在9 V电压下, 器件最大亮度达到5 225 cd/m2, 远优于其他厚度的器件。实验结果与仿真结果基本吻合。
量子点发光二极管 隧穿注入 空间电荷限制电流 电流密度 亮度 电流效率 quantum dot light emitting diode tunneling injection space-charge limited current current density luminance current efficiency 
发光学报
2017, 38(4): 507
作者单位
摘要
1 北京交通大学 电子信息工程学院, 北京100044
2 北京信息科技大学 自动化学院, 北京100101
针对量子点发光二极管(QLED)中载流子注入不平衡的问题,对空穴和电子在量子点层的注入速率进行了研究。制备了不同电子传输层厚度、结构为ITO/PEDOT∶PSS/Poly-TPD/QDs/Alq3/Al的QLED样品。Alq3厚度由25 nm逐步递增至45 nm时,器件的开启电压升高,器件均发出量子点的红光。当Alq3厚度为30 nm时,器件的电流效率最高。此时,空穴和电子在量子点层的注入速率达到相对平衡。为进一步研究器件的发光特性,在QDs和Alq3接触界面嵌入电子阻塞层TPD。研究发现,当TPD的厚度为1 nm时,器件发出红光;当TPD厚度为3 nm和5 nm时,器件开始出现绿光。实验结果表明,在选取电子阻塞层时,应选择LUMO较低的材料且阻塞层的厚度必须很薄。
量子点发光二极管 厚度 能级 电流密度 亮度 电流效率 quantum dot light emitting diode thickness energy level current density luminance current efficiency 
发光学报
2017, 38(1): 85
于瑶瑶 1,2陈星明 1,2金玉 1,2吴志军 1,2陈燕 1,2,*
作者单位
摘要
1 华侨大学 信息科学与工程学院, 福建 厦门 361021
2 厦门市移动多媒体通信重点实验室, 福建 厦门 361021
为了能够有效地提高电子的注入和传输能力, 改善有机电致发光器件的性能, 本文利用CsN3作为n型掺杂剂, 对有机电子传输材料Bphen进行n型电学掺杂, 制备了结构为ITO/MoO3(2 nm)/NPB(50 nm)/Alq3(30 nm)/Bphen(15 nm)/Bphen∶CsN3(15 nm,x%, x=10,15,20)/Al(100 nm)的器件。实验结果表明, CsN3是一种有效的n型掺杂剂, 以掺杂层Bphen∶CsN3 作为电子传输层, 可以有效地降低电子的注入势垒, 改善器件的电子注入和传输能力, 从而降低器件的开启电压, 同时提高了器件的亮度和发光效率。在掺杂浓度为10%时器件的性能最优, 开启电压仅为2.3 V, 在7.2 V的驱动电压下, 达到最大亮度29 060 cd/m2, 是非掺杂器件的2.5倍以上。当驱动电压为6.6 V时, 达到最大电流效率3.27 cd/A。而当掺杂浓度进一步提高时, 由于Cs扩散严重, 发光区形成淬灭中心, 造成器件的效率下降。
n型掺杂 有机电致发光器件 电流效率 CsN3 CsN3 n-type dopant organic light-emitting devices current efficiency 
液晶与显示
2016, 31(8): 773
作者单位
摘要
聊城大学物理科学与信息工程学院山东省光通信科学与技术重点实验室, 山东 聊城 252059
通过在有机发光二极管(OLED)的阳极与空穴传输层NPB之间加入m-MTDATA作为缓冲层来研究缓冲层对器件性能的影响。制备了ITO/m-MTDATA(d nm)/NPB(40-d nm)/Alq3(70 nm)/LiF(0.5 nm)/Al(40 nm)、ITO/ MoO3 (15 nm)/NPB(25 nm)/Alq3 (70 nm)/LiF(0.5 nm)/Al(40 nm)结构的器件,研究不同m-MTDATA厚度对OLED发光亮度、电流密度、电流效率等性能的影响。实验发现,当缓冲层的厚度为15 nm时,器件的启亮电压从未加缓冲层的13 V降到了9 V,最大发光亮度从未加缓冲层的5900 cd/m2增加到16300 cd/m2,是原来的2.76倍。最高的电流效率也由未加缓冲层的1.8 cd/A变为3.5 cd/A,是原来的1.94倍。然后在器件的氧化铟锡(ITO)与NPB之间插入了厚度为15 nm的MoO3缓冲层。与同厚度的m-MTDATA器件相比,插入MoO3缓冲层器件的启亮电压降低为8 V,最大亮度为13320 cd/m2,最大电流密度为6030.74 A/m2,最大的电流效率为3.06 cd/A。
光学器件 有机发光二极管 缓冲层 发光亮度 电流效率 
激光与光电子学进展
2016, 53(8): 082302
作者单位
摘要
1 华侨大学 信息科学与工程学院,福建 厦门 361021
2 厦门市移动多媒体通信重点实验室,福建 厦门 361021
以半透明超薄金属银作为阴极,紫外臭氧处理的厚金属银作为阳极,制备了高效率高亮度的黄光硅基顶发射有机发光器件。当电压为9 V时,器件的最大电流效率为4.9 cd/A,当电压为17 V时,器件的亮度达到14 040 cd/m2。通过增加掺杂浓度及阳极厚度对器件结构进一步优化后,器件性能显著提高,其电流效率在外加电压为10 V时达到11 cd/A,相应亮度为21 748 cd/m2. 顶发射器件中存在的微腔效应能有效提高器件的发光效率以及亮度,但是也会使器件的共振波长随着观察视角的增大而蓝移。由于采用合适的发光材料,本实验制备的器件的发光峰值在0°~75°视角范围内几乎没有变化。
顶发射 有机电致发光器件 表面修饰 亮度 电流效率 top-emitting organic light-emitting devices surface-modified luminance current efficiency 
液晶与显示
2015, 30(6): 960

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!