作者单位
摘要
1 河北大学物理科学与技术学院, 河北 保定 071002
2 滨州学院航空工程学院, 山东 滨州 256603
臭氧作为一种强氧化剂和杀菌剂, 在污染物降解, 食品加工, 杀菌消毒, 医疗卫生等方面有着非常广泛的应用。 大气压介质阻挡放电是一种极为高效的产生臭氧的方法, 利用平行平板介质阻挡放电装置, 采用交流高压激励, 产生了大气压空气非平衡态等离子体。 通过测量其电压和发光信号, 发现在电压的正、 负半周期均存在着许多随机的放电脉冲, 并且其脉宽均在几十到几百纳秒之间, 这表明其机制是流光放电。 放电的光学发射谱包含氮分子的第二正带系(C3Π-B3Π)和第一正带系(B3П-A3П), 氮分子离子的第一负带系(B2Σ-X2Σ), 以及氧原子谱线(715.7和799.5 nm)。 由于流光放电在紫外区域(200~300 nm)没有明显的发射谱线, 但臭氧在此区域存在吸收峰, 因此可以利用此区域的紫外吸收光谱测量放电产生的臭氧浓度。 吸收光谱法可以有效的监测其臭氧浓度的变化情况, 其优势在于操作简单, 对实验环境要求低, 可在放电条件下使用, 并且可以连续监测臭氧浓度变化。 基于此, 通过Beer-Lambert定律计算了臭氧浓度随实验参数的变化, 结果发现随外加电压幅值和驱动频率的增加, 臭氧浓度升高。 这些结果对于大气压介质阻挡放电的工业应用具有重要价值。
介质阻挡放电 发射光谱 吸收光谱 臭氧浓度 Beer-Lambert定律 Dielectric barrier discharge Optical emission spectrum Absorption spectrum Ozone concentration Beer-Lambert’s law 
光谱学与光谱分析
2020, 40(2): 461
郑朝阳 1,2,*张天舒 1,*范广强 1刘洋 1[ ... ]项衍 3
作者单位
摘要
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230037
3 安徽大学物质科学与信息技术研究院, 安徽 合肥 230039
对大气臭氧探测激光雷达出现硬件故障时的回波特征进行了分析。根据回波形态和雷达强度等,采用基于模糊逻辑的质量控制方法,对雷达硬件故障数据进行了识别检验,识别率高达93%,即能较好地实现对硬件故障数据的质量控制。比较了硬件故障时的数据和被误判的正常数据在300~500 m高度上对应的臭氧浓度和信噪比均值,找出统计特性,降低了对正常数据的误判率。
测量 数据质量控制 模糊逻辑 隶属函数 信噪比 臭氧浓度 
中国激光
2019, 46(4): 0404004
陈锦超 1,2刘东 1,*王珍珠 1谢晨波 1[ ... ]王英俭 1,2
作者单位
摘要
1 中国科学院安徽光学精密机械研究所 中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
近地面臭氧污染日趋严重,对人类健康和动植物生长有显著危害。对合肥和邢台两地近地面臭氧结果进行了对比分析。2003~2004年期间合肥地区臭氧 浓度日变化呈现较明显的早、中、晚“三峰型”结构;2016年5~6月观测期间邢台臭氧日变化主要呈现早、中“双峰”型结构。合肥臭氧观测站周围 被树木环绕、水库包围,植物释放的挥发性有机物引发的光化学反应不容忽视; 陆地和水面之间形成的湖陆风下沉气流是形成早晚次峰的主要原因。 邢台属于复合型污染地区,臭氧浓度分析应综合考虑污染源、臭氧前体物成分、气象条件、地理位置等因素。合肥地区数据研究表明,强太阳辐射、 温度较高、相对湿度较低的天气有利于臭氧生成。
近地面臭氧浓度 气象因素 臭氧污染 near surface ozone concentration meteorological factors ozone pollution 
大气与环境光学学报
2018, 13(1): 27
作者单位
摘要
中国科学院安徽光学精密机械研究所大气成分与光学重点实验室, 安徽 合肥 230031
差分吸收激光雷达是测量对流层臭氧时空分布的有力工具,利用差分吸收激光雷达在灰霾条件下开展观测研究,分析了臭氧浓度时空分布特征。结果表明:在夏季副热带高压大气天气条件下,受偏南风气团输送的影响,6月中旬形成一次高浓度的臭氧污染过程。6月14日夜间至6月15日中午离地面1.5~2 km高度的臭氧气团浓度(即体积分数)高达1.2×10-7以上,下午臭氧气团出现下沉,从而引起当日下午近地面臭氧浓度的升高。在灰霾天气过程中,细颗粒物与臭氧分布在不同高度上具有不同的关联特征,地面颗粒物充分参与了光化学反应过程,而高空高浓度的颗粒物和臭氧气体则与输送有关。晴朗天气下的臭氧浓度在整个空间尺度上都有不同程度的下降,并且没有出现明显的外部输入气团。
大气光学 差分吸收激光雷达 灰霾 臭氧浓度 副热带高压 
中国激光
2014, 41(10): 1014003
作者单位
摘要
中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥230031
差分吸收激光雷达探测对流层臭氧浓度时, 气溶胶的干扰会造成较大的误差。 提出了一种算法, 该算法能够同时反演得到对流层臭氧浓度和气溶胶消光系数, 减少气溶胶对反演结果的影响。 使用实验数据, 分析计算了气溶胶雷达比, 气溶胶波长指数、 标定点气溶胶后向散射比各种变化参数对反演结果的误差。 结果表明, 1 km以下, 各种变化参数造成的反演误差小于8%, 1 km以上臭氧浓度误差主要来源于信号和背景噪声, 各种参数反演误差小于3%。 最后给出了利用该算法得到对流层臭氧浓度和气溶胶的消光系数垂直廓线, 并和传统的双波长差分算法反演结果作了比较分析。 实验结果表明该算法是可行的, 该算法可以减少气溶胶对差分吸收激光雷达测量结果引起的误差。
大气光学 臭氧浓度 气溶胶干扰 差分吸收激光雷达 Atmospheric optics Ozone concentration Aerosol interference Differential absorption lidar 
光谱学与光谱分析
2012, 32(12): 3304

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!