作者单位
摘要
1 西北大学信息科学与技术学院, 陕西 西安 710127
2 西安电子科技大学生命科学学院, 陕西 西安 710126
针对荧光分子断层成像数据采集方式存在的问题,提出了一种基于频率调制和空间编码的成像方法,旨在改进数据采集方案,缩短数据采集时间。在该方法中,激发光束被分成若干个子束,用作多点激发光源。这些子光束首先被调制成不同的频率,然后同时入射到目标表面的不同点上。在检测端,目标的出射光首先通过空间编码掩模,然后被引导至单光电倍增管。根据压缩感知理论,改变掩模的模式,进行稀疏重构恢复,最终得到目标表面荧光信号的分布。为了验证本文所提方法的可行性,设计了相应的仿真模拟实验,实验结果表明该方法可以较好地恢复原始图像,证明该方法的可行性。
医用光学 荧光分子断层成像 频率调制 空间编码 压缩感知理论 光电倍增管 
中国激光
2020, 47(1): 0107001
卢笛 1,2卫潇 1,2曹欣 1,2,**贺小伟 1,2,*侯榆青 1,2
作者单位
摘要
1 西北大学信息科学与技术学院, 陕西 西安 710127
2 西北大学西安市影像组学与智能感知重点实验室, 陕西 西安 710127
多激发点荧光分子断层成像(FMT)重建过程中生成的系统矩阵规模较大,导致计算复杂度高,重建时间长。为了加快重建速度并保证其准确性,基于人工神经网络理论,通过降低系统矩阵规模,提出了一种快速FMT重建方法。具体来说,采用的降维方法是自编码器,即一种典型的人工神经网络,训练数据为由系统矩阵和表面荧光测量值组成的矩阵,然后使用自编码器网络的编码部分得到原始矩阵在低维空间上的表示。为了测试所提方法的性能,设计了一系列数值模拟实验,包括非匀质圆柱体实验和数字鼠实验。实验结果表明,该方法能有效缩短重建时间,得到较高的重建精度。
医用光学 荧光分子断层成像 数据降维 深度学习 自编码器 图像重建 
光学学报
2019, 39(6): 0617001
作者单位
摘要
西北大学信息科学与技术学院, 陕西 西安 710127
在面向精准医疗的分子影像领域,荧光分子断层成像(FMT)是当前的研究热点之一。由于FMT逆问题严重的病态性,背景荧光噪声会对重建结果产生严重的负面影响。在深入研究基于有限元的FMT重建方法的基础上,提出利用低秩矩阵填充技术克服背景荧光的方法。该方法将不同激发节点形成的外表面观测组成一个有元素缺失的观测矩阵,利用低秩矩阵填充算法恢复该矩阵的缺失元素,同时抑制观测矩阵含有的背景荧光噪声。利用去噪后的观测矩阵建立了新的FMT逆问题模型,并利用其对荧光目标进行重建。单荧光和双荧光目标重建实验表明:基于去噪后FMT逆问题模型的重建结果获得了显著改善。
生物光学 背景荧光抑制 低秩矩阵填充 去噪 荧光分子断层成像 
光学学报
2018, 38(10): 1017003
作者单位
摘要
西北大学信息科学与技术学院, 陕西 西安 710127
荧光分子断层成像是一种高稳定性、低副作用的分子影像技术, 一直是生物光学领域的研究热点, 当激发平面位置与荧光目标位置接近时, 光源的重建结果会更好; 为了确定激发平面的位置, 提出了一种混合高斯方法, 该方法首先使用少量激发光源来获得发射光的生物体外表面分布, 再使用带剪枝策略的混合高斯模型对该分布进行拟合, 最后利用拟合后的峰值自动确定激发平面的个数和位置; 基于新激发平面的激发光源可以获得荧光分子断层成像逆问题, 进而利用该逆问题对荧光目标进行重建。实验结果表明:基于重新定位的激发平面的荧光分子断层成像光源重建结果在定位精度上显著优于原始激发平面对应的重建结果。
生物光学 激发平面定位 高斯混合分布 荧光分子断层成像 
激光与光电子学进展
2018, 55(10): 101701
作者单位
摘要
西北大学 信息科学与技术学院 西安市影像组学与智肾感知重点实验室, 陕西 西安 710127
为了实现快速、准确、鲁棒的荧光分子断层成像(FMT)重建, 有限投影FMT和可行域选取策略得到了越来越多的关注。为了解决现有的可行域选取方法中存在的参数设置困难以及多目标选取不准确的问题, 从而提高有限投影FMT的重建质量, 提出了应用迭代自组织数据分析技术算法(ISODATA)的FMT可行域选取方法。首先采用ISODATA对初级重建结果聚类分区, 然后在各分离的区域上分别选取可行域。为了验证提出的方法在应用中的可行性和有效性, 设计了三目标荧光团重建的对比实验。实验结果显示,使用2个投影数据时, 只有使用本文提出的方法可以准确地重建出三个荧光源的位置; 使用4个投影数据时, 重建的平均位置误差为0.18 mm, 荧光产额相对误差小于50%, 而此时使用阈值法不能重建, 使用区域收缩法的荧光产额相对误差为61.2%。即使在测量数据较少时, 提出的方法也可以准确高效地选取可行域, 提高有限投影FMT重建的精确度和鲁棒性。
荧光分子断层成像 有限投影 可行域选取 迭代自组织数据分析技术算法 fluorescence molecular tomography limited-projection permissible region selection iterative self-organizing data analysis technique 
光学 精密工程
2018, 26(8): 2074
作者单位
摘要
西北大学信息科学与技术学院, 陕西 西安 710127
有限投影荧光分子断层成像(FMT)可以以较短的数据采集时间在动物体内快速重建出荧光目标的三维分布。然而, 由于较少的投影数据使得有限投影FMT具有严重的病态性。为了降低FMT重建的病态性并提高重建速度, 考虑到FMT中光源稀疏分布的特性, 提出了一种结合平滑l0范数(SL0)和可行区域的有限投影FMT重建方法, 采用一种基于SL0的FMT重建方法, 利用一个连续函数来逼近l0范数, 以实现快速求解, 同时将可行区域作为有效的先验信息, 以提高重建精度。数字鼠模型的重建结果表明, 在3、6、9个激发点下, 重建图像的位置误差都小于1 mm, 重建时间缩短, 3个激发点下的重建时间为8 s。物理实验的重建结果进一步表明了该方法在实际FMT重建上的可行性。
生物光学 荧光分子断层成像 有限投影 l0范数 图像重建 
中国激光
2018, 45(9): 0907001
作者单位
摘要
西北大学信息科学与技术学院, 陕西 西安 710127
在非匀质成像中,器官形状是影响建模光在生物体内传播过程的重要因素,它能直接影响荧光分子断层成像(FMT)的重建过程。器官图像的手动分割过程较为复杂,且对图像质量要求较高,而边缘检测、区域生长、主动轮廓模型等自动分割方法在处理复杂医学图像时存在很大的局限性。因此,使用基于主动形状模型(ASM)的自动分割方法,对小鼠器官图像进行准确分割,并使用基于L1范数优化的重建算法实现光源重建。为分析基于ASM的器官图像分割精度与重建精度的关系,采集小鼠计算机断层扫描(CT)数据并进行真实实验,与流行的基于Snake模型的分割算法进行比较。实验结果表明,ASM算法可以替代手动分割,不影响光源的位置重建。
成像系统 图像分割 光源重建 主动形状模型 荧光分子断层成像 逆问题 
光学学报
2018, 38(2): 0211001
作者单位
摘要
苏州大学电子信息学院, 江苏 苏州 215006
在荧光分子断层图像重建过程中,对于生物组织体内具有相同光学参数、相同深度,但不同体积的荧光团,重建出的荧光团光学参数存在较大误差。提出了一种基于体积补偿的荧光分子断层图像重建算法。该算法利用改进的迭代自组织数据分析技术(ISODATA),设计了初始聚类中心选择和初始期望聚类个数确定的方法,对预迭代的重建图像进行聚类分析。根据聚类得出的荧光团体积大小,设计了一种基于对数运算的体积权值系数计算方法,对重建的荧光光学参数进行非线性补偿。仿真实验结果表明,非线性补偿方法能够较好地修正因荧光团体积大小不一而造成的图像重建误差,显著提高重建图像的质量。
医用光学 荧光分子断层成像 图像重建 补偿 
中国激光
2018, 45(3): 0307016
作者单位
摘要
西北大学信息科学与技术学院, 陕西 西安 710127
增加测量信息可以有效降低荧光分子断层成像(FMT)重建的病态性,但随着数据增多,重建耗时也会显著增加。为了降低FMT重建的病态性和提升大规模数据集下的重建效率,结合对偶坐标下降法(DCA)和交替方向乘子法(ADMM)提出了一种改进的随机变量的交替方向乘子法重建优化方法。在原始ADMM方法的基础上,增加了一个随机更新规则,在每次迭代中只需要一个或者几个样本,就可加速收敛,使目标函数快速得到最优解,从而达到快速重建的效果。设计了数字鼠仿真实验和真实鼠实验,实验结果表明,所提方法在保证FMT重建图像精度的同时,显著提高了重建效率。
医用光学 荧光分子断层成像 Lasso问题 交替方向乘子法 图像重建 
光学学报
2017, 37(7): 0717001
作者单位
摘要
西北大学信息科学与技术学院, 陕西 西安 710127
采用大规模荧光分子断层成像(FMT)投影数据进行重建需要消耗大量的计算内存,花费较长的计算时间。为降低FMT重建的病态性以及加快重建速度,基于流形学习和压缩感知理论,提出了结合局部保留投影(LPP)和稀疏正则化的重建方法,并对原始的多投影荧光数据进行重建。为评估该方法的重建效果和时间,分别设计了非匀质圆柱单、双目标仿真实验和真实小鼠实验。实验结果表明,在保证FMT重建图像精度和分辨率的同时将重建时间大幅度减少。
生物光学 荧光分子断层成像 数据降维 局部保留投影 图像重建 
光学学报
2016, 36(7): 0717001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!