激光生物学报, 2011, 20 (3): 367, 网络出版: 2015-10-08  

嗜铁钩端螺旋菌(Leptospirillum ferriphilum)gyrB基因的PCR扩增、克隆与序列分析

PCR Amplification, Cloning and Sequence Analysis of gyrB Gene with a Pair of Degenerate Primer from Leptospirillum ferriphilum
作者单位
1 湖南科技大学生命科学学院, 湖南 湘潭410201
2 中南大学资源加工与生物工程学院, 湖南 长沙410083
摘要
根据GenBank 和ICB 数据库中gyrB蛋白氨基酸序列的两个保守区域TPGMYIG和QRY(F)KGLGEM设计简并引物, 以L. ferriphilum菌株YSK基因组DNA为模板, PCR扩增出获得大小约为2.2 kb的DNA片段。序列分析表明, 菌株YSK的扩增片断的开放阅读框(ORF)能够推导出一个编码分子量约为82.24 kD、氨基酸数目为731个的蛋白质片断。这个氨基酸序列与所研究的gyrB蛋白氨基酸序列显示出高度的同源性, 尤其是与菌株AMC_Cont91的gyrB蛋白氨基酸序列的相似性高达92 %, 而与M. xanthus的gyrB的相似性最低, 仅为37 %。基于氨基酸序列的同源性及其所预测的蛋白质大小, 可以推断出该扩增片段属于gyrB基因。
Abstract
According to two conserved regions PGMYIG and QRY(F)KGLGEM of the amino acid sequences of the DNA gyrase subunit B proteins of bacteria from Genbank and ICB database, a pair of degenerate primer was designed to amplify the gyrB gene from L. ferriphilum strain YSK. Sequence analysis indicated that the ORF of PCR products from L. ferriphilum strain YSK could potentially encode a protein fragment of 731 amino acids with a molecular mass of 82.24 kDa. The deduced amino acid sequence of the ORF displayed strong homology to all gyrB proteins used in this study. The highest score was found with the product of AMC_Cont91 (92 % similarity). The similarity to the smallest G. sulfurreducens protein gyrB was 37 %. On the basis of the amino acid sequence homology and the predicted protein size, we concluded that the strain YSK ORF was the gyrB gene.
参考文献

[1] YAMAMOTO S, HARAYAMA S. PCR Amplification and Direct Sequencing of gyrB Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomonas putida Strains[J]. Appl Environ Microbiol, 1995, 61(3): 1104-1109.

[2] YAMAMOTO S, BOUVET P J M, HARAYAMA S. Phylogenetic Structures of the Genus Acinetobacter Based on the gyrB Sequences: Comparison with the Grouping by DNA-DNA Hybridization[J]. Int J Syst Evol Microbiol, 1999, 49(1): 87-95.

[3] YAMAMOTO S, HARAYAMA S. Phylogenetic Relationships of Pseudomonas putida Strains Deduced from the Nucleotide Sequences of gyrB, rpoD, and 16S rRNA Genes[J]. Int J Syst Evol Microbiol, 1998, 48(3): 813-819.

[4] VENKATESWARAN K, MOSER D P, DOLLHOPF M E, et al. Polyphasic Taxonomy of the Genus Shewanella and Description of Shewanella oneidensis sp. nov[J]. Int J Syst Evol Microbiol, 1999, 49(2): 705-724.

[5] KASAI H, EZAKI T, HARAYAMA S. Differentiation of Phylogenetically Related Slowly Growing Mycobacteria by Their gyrB Sequences[J]. J Clin Microbiol, 2000, 38(1): 301-308.

[6] OCHMAN H, WILSON A C. Evolution in Bacteria: Evidence for a Universal Substitution Rate in Cellar Genomes[J]. J Mol Evol, 1987, 26: 74-86.

[7] HUANG W M. Bacterial Diversity Based on Type II DNA Topoisomerase Genes[J]. Annu Rev Genet, 1996, 30: 79-107.

[8] ASH C, FARROW J A E, WALLBANKS S, et al. Phylogenetic Heterogeneity of the Genus Bacillus Revealed by Comparative Analysis of Small Subunit-ribosomal RNA Sequences[J]. Let Appl Microbiol, 1991, 13(4): 202-206.

[9] FALCO L, POGLIANI C, CURUTCHET G, et al. A Comparison of Bioleaching of Covellite Using Pure Cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a Mixed Culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans[J]. Hydrometallurgy, 2003, 71(1-2): 31-36.

[10] JOHNSON D B, OKIBE N, HALLBERG K B. Differentiation and Identification of Iron-oxidizing Acidophilic Bacteria Using Cultivation Techniques and Amplified Ribosomal DNA Restriction Enzyme Analysis[J]. J Microbiol Methods, 2005, 60(3): 299-313.

[11] RAWLINGS D E, TRIBUTSCH H, HANSFORD G S. Reasons why’Leptospirillum’-like Species rather than Thiobacillus Ferrooxidans are the Dominant Iron-oxidizing Bacteria in many Commercial Processes for the Biooxidation of Pyrite and Related Ores[J]. Microbiology, 1999, 145(1): 5-13.

[12] RAWLINGS D E. Restriction Enzyme Analysis of 16S rRNA Genes for the Rapid Identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillus ferrooxidans Strains in Leaching Environments. In C A Jerez, T Vargas, H Toledo, and J V Wiertz (ed), Bio-hydrometallurgical Processing[C]. University of Chile Press, Santiago, Chile, 1995, 2: 9-17.

[13] CORAM N J, RAWLINGS D E. Molecular Relationship between Two Groups of Leptospirillum and the Finding that the World and the Leptospirillum ferriphilum sp. nov. Dominates South African Commercial Biooxidation Tanks that Operate at 40℃[J]. Appl Environ Microbiol, 2002, 68(2): 838-845.

[14] MARKOSYAN G E. A New Iron-oxidizing Bacterium-Leptospirillum ferrooxidans nov. gen. nov. sp[J]. Biol J Armen, 1972, 25: 26-29 (in Russian).

[15] GOLOVACHEVA R S, GOLYSHINA O V, KARAVAIKO G I, et al. A New Ironoxidizing Bacterium, Leptospirillum thermoferrooxidans sp. Nov[J]. Mikrobiologiya, 1992, 61: 744-750.

[16] TYSON G W, LO I, BAKER B J, et al. Genome-Directed Isolation of the Key Nitrogen Fixer Leptospirillum ferrodiazotrophum sp. nov. from an Acidophilic Microbial Community[J]. Appl Environ Microbiol, 2005, 71(10): 6319-6324.

[17] GILBERT E J, MAXWELL A. The 24 kDa N-terminal Subdomain of the DNA gyrase B Protein Binds Coumarin Drugs[J]. Mol Microbiol, 1994, 12 (3): 365-373.

[18] ALI J A, JACKSON A P, HOWELLS A J, et al. The 43 kDa N-terminal Fragment of the Gyrase B Protein Hydrolyses ATP and Binds Coumarin Drugs[J]. Biochemistry, 1993, 24: 2717-2724.

[19] SENGUPTA T, MUKHERJEE M, DAS A, et al. Characterization of the ATPase Activity of Topoisomerase II from Leishmania Donovani and Identification of Residues Conferring Resistance to Etoposide[J]. Biochem Journal, 2005, 390 (2): 419-426.

高健, 康健, 邱冠周. 嗜铁钩端螺旋菌(Leptospirillum ferriphilum)gyrB基因的PCR扩增、克隆与序列分析[J]. 激光生物学报, 2011, 20(3): 367. GAO Jian, KANG Jian, QIU Guan-zhou. PCR Amplification, Cloning and Sequence Analysis of gyrB Gene with a Pair of Degenerate Primer from Leptospirillum ferriphilum[J]. Acta Laser Biology Sinica, 2011, 20(3): 367.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!