Photonics Research, 2018, 6 (7): 07000734, Published Online: Jul. 4, 2018   

Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700  nm

Author Affiliations
1 Electrical and Computer Engineering, University of California—Davis, Davis, California 95618, USA
2 W&WSens Devices, Inc., 4546 El Camino, Suite 215, Los Altos, California 94022, USA
3 Electrical Engineering, Baskin School of Engineering, University of California, Santa Cruz, California 95064, USA
4 e-mail: sislam@ucdavis.edu
Copy Citation Text

Hilal Cansizoglu, Cesar Bartolo-Perez, Yang Gao, Ekaterina Ponizovskaya Devine, Soroush Ghandiparsi, Kazim G. Polat, Hasina H. Mamtaz, Toshishige Yamada, Aly F. Elrefaie, Shih-Yuan Wang, M. Saif Islam. Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700  nm[J]. Photonics Research, 2018, 6(7): 07000734.

References

[1] VermesanO.FriessP., Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems (River, 2013).

[2] Y. A. Vlasov. Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G. IEEE Commun. Mag., 2012, 50: s67-s72.

[3] V. Houtsma, D. van Veen, E. Harstead. Recent progress on standardization of next-generation 25, 50, and 100G EPON. J. Lightwave Technol., 2017, 35: 1228-1234.

[4] LiZ.JungY.-M.SimakovN.ShardlowP.HeidtA.ClarksonA.AlamS.-U.RichardsonD. J., “Extreme short wavelength operation (1.65–1.7  μm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Tu2C.1.

[5] S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, E. M. Dianov. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band. Sci. Rep., 2016, 6: 28939.

[6] ZhangH.LiZ.KavanaghN.ZhaoJ.YeN.ChenY.WheelerN.WoolerJ.HayesJ.SandoghchiS., “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

[7] T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, F. Poletti. Enhancing optical communications with brand new fibers. IEEE Commun. Mag., 2012, 50: s31-s42.

[8] P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, E. Diamanti. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics, 2013, 7: 378-381.

[9] R. Sabatini, M. A. Richardson, H. Jia, D. Zammit-Mangion. Airborne laser systems for atmospheric sounding in the near infrared. Proc. SPIE, 2012, 8433: 843314.

[10] L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, R. R. Alfano. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt., 2014, 19: 056004.

[11] S. Gunapala, B. Levine, D. Ritter, R. Hamm, M. Panish. InGaAs/InP long wavelength quantum well infrared photodetectors. Appl. Phys. Lett., 1991, 58: 2024-2026.

[12] H. Ito, T. Furuta, S. Kodama, T. Ishibashi. InP/InGaAs uni-travelling-carrier photodiode with 310  GHz bandwidth. Electron. Lett., 2000, 36: 1809-1810.

[13] H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, M. S. Islam. A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures. IEEE Trans. Electron Devices, 2018, 65: 372-381.

[14] H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, M. S. Islam. A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures. IEEE Trans. Electron Devices, 2018, 65: 382-391.

[15] J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, B. S. Meyerson. Foundation of RF CMOS and SiGe BiCMOS technologies. IBM J. Res. Dev., 2003, 47: 101-138.

[16] SzeS., Physics of Semiconductor Devices (Wiley, 1981).

[17] H. Ye, J. Yu. Germanium epitaxy on silicon. Sci. Technol. Adv. Mater., 2014, 15: 024601.

[18] J. Michel, J. Liu, L. C. Kimerling. High-performance Ge-on-Si photodetectors. Nat. Photonics, 2010, 4: 527-534.

[19] A. Beling, J. C. Campbell. High-speed photodiodes. IEEE J. Sel. Top. Quantum Electron., 2014, 20: 57-63.

[20] A. N. Larsen. Epitaxial growth of Ge and SiGe on Si substrates. Mater. Sci. Semicond. Process., 2006, 9: 454-459.

[21] Z. Huang, J. Oh, J. C. Campbell. Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers. Appl. Phys. Lett., 2004, 85: 3286-3288.

[22] L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, F. Evangelisti. Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si. Appl. Phys. Lett., 1998, 72: 3175-3177.

[23] H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett., 1999, 75: 2909-2911.

[24] H.-Y. Yu, J.-H. Park, A. K. Okyay, K. C. Saraswat. Selective-area high-quality germanium growth for monolithic integrated optoelectronics. IEEE Electron Device Lett., 2012, 33: 579-581.

[25] D. Houghton. Strain relaxation kinetics in Si1-xGex/Si heterostructures. J. Appl. Phys., 1991, 70: 2136-2151.

[26] F. LeGoues, B. Meyerson, J. Morar. Anomalous strain relaxation in SiGe thin films and superlattices. Phys. Rev. Lett., 1991, 66: 2903-2906.

[27] O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu. High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation. IEEE Photon. Technol. Lett., 2005, 17: 175-177.

[28] Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, M. S. Islam. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photonics, 2017, 11: 301-308.

[29] Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, M. S. Islam. High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength. ACS Photon., 2017, 4: 2053-2060.

[30] S. Peng, G. M. Morris. Resonant scattering from two-dimensional gratings. J. Opt. Soc. Am. A, 1996, 13: 993-1005.

[31] NieQ. C.ChenB. K., “Application of ADE-FDTD method in lossy Lorentz media,” in Advanced Materials Research (Trans Tech, 2014), pp. 24862489.

[32] H. Wen, E. Bellotti. Rigorous theory of the radiative and gain characteristics of silicon and germanium lasing media. Phys. Rev. B, 2015, 91: 035307.

[33] M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg. Analysis of enhanced light emission from highly strained germanium microbridges. Nat. Photonics, 2013, 7: 466-472.

[34] Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, C. S. Tan. High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform. Photon. Res., 2017, 5: 702-709.

[35] J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, L. C. Kimerling. Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Appl. Phys. Lett., 2005, 87: 011110.

[36] J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, J. Michel. Ge-on-Si optoelectronics. Thin Solid Films, 2012, 520: 3354-3360.

[37] J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, S. Laval. Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection. J. Appl. Phys., 2004, 95: 5905-5913.

[38] L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, L. C. Kimerling. Ge on Si p-i-n photodiodes operating at 10  Gbit/s. Appl. Phys. Lett., 2006, 88: 101111.

[39] D. Su, S. Kim, J. Joo, G. Kim. 36-GHz high-responsivity Ge photodetectors grown by RPCVD. IEEE Photon. Technol. Lett., 2009, 21: 672-674.

[40] L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, L. Kimerling. Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates. Appl. Phys. Lett., 2000, 76: 1231-1233.

[41] C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, Q. Wang. High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection. IEEE Trans. Electron Devices, 2013, 60: 1183-1187.

[42] Z. Zhou, J. He, R. Wang, C. Li, J. Yu. Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition. Opt. Commun., 2010, 283: 3404-3407.

[43] K. Rush, S. Draving, J. Kerley. Characterizing high-speed oscilloscopes. IEEE Spectr., 1990, 27: 38-39.

[44] H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, A. F. Elrefaie. Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm. Proc. SPIE, 2017, 10349: 103490U.

[45] MoeneclaeyB.KanakisG.VerbruggheJ.IliadisN.SoenenW.KalavrouziotisD.SpatharakisC.DrisS.YinX.BakopoulosP., “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.

[46] D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, J. Inasaka. A 25-Gb/s 5 × 5  mm 2 chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier. J. Lightwave Technol., 2016, 34: 2988-2995.

[47] A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, G. S. Buller. Kilometer-range depth imaging at 1550  nm wavelength using an InGaAs/InP single-photon avalanche diode detector. Opt. Express, 2013, 21: 22098-22113.

[48] M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, H. Zeng. Laser ranging at 1550  nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector. Opt. Express, 2011, 19: 13497-13502.

[49] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 2009, 3: 696-705.

Hilal Cansizoglu, Cesar Bartolo-Perez, Yang Gao, Ekaterina Ponizovskaya Devine, Soroush Ghandiparsi, Kazim G. Polat, Hasina H. Mamtaz, Toshishige Yamada, Aly F. Elrefaie, Shih-Yuan Wang, M. Saif Islam. Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700  nm[J]. Photonics Research, 2018, 6(7): 07000734.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!