半导体光电, 2018, 39 (5): 643, 网络出版: 2019-01-10  

基于热平衡机理的质子交换炉温控系统数学模型

Research on Mathematical Model of Temperature Control System in Proton Exchange Furnace Based on Heat Balance Mechanism
作者单位
北京航空航天大学 仪器科学与光电工程学院, 北京 100191
摘要
铌酸锂波导集成光学芯片是高精度光纤陀螺系统的核心器件, 其性能直接影响光纤陀螺系统的性能。而质子交换炉是用质子交换法制备铌酸锂光波导的主要设备, 其炉温的控制质量直接影响铌酸锂光波导的质量。为了实现炉温的精确控制, 以炉膛内空气的温度为控制对象, 基于热平衡机理建立了质子交换炉温控模型, 并在此模型基础上进行了稳定性分析, 并利用MATLAB软件对温控模型进行PID控制仿真, 结果表明, 所建立出来的温控模型是稳定的, 但系统采用PID控制时抗干扰能力差, 这为进一步研究温度控制策略提供了依据。
Abstract
As the core component of high precision fiber optic gyroscope system, the performance of lithium niobate waveguide integrated optical chip directly affects the performance of fiber optic gyroscope system. Proton exchange furnace is the main equipment for the preparation of lithium niobate optical waveguide by proton exchange method. The quality of the furnace temperature control directly affects the quality of the lithium niobate optical waveguide. In order to realize accurate control of the temperature of the furnace, taking the temperature of air as the control object, the proton exchange furnace temperature control model was established based on heat balance mechanism. The stability analysis and PID control simulation by using MATLAB software based on this model were performed. The results show that the built temperature model is stable, and the system with PID control has poor antiinterference ability, which provides a basis for the further study of temperature control strategy.
参考文献

[1] Jackel J L, Rice C E, Veselka J J. Protonexchanged for highindex waveguides in LiNbO3[J]. Appl. Phys. Lett., 1982, 41(7): 607608.

[2] Yuhara T, Tada K, Li Yusha. Anomalous refractive index change and recovery of electrooptic cofficientr33 in protonexchanged LiNbO3 optical waveguides after annealing[J]. J. of Appl. Phys., 1991, 71(8): 39663974.

[3] Matthews P J, Mickelson A R, Novak S W. Properties of proton exchange waveguides in lithium tantalite[J]. J. of Appl. Phys., 1992, 72(7): 25622563.

[4] Van Ditzhuijzen G, Staalman D, Koorn A. Identification and model predictive control of a slab reheating furnace[C]// Proc. of the Inter. Conf. on Control Appl., 2002, 1: 361366.

[5] 杜 静. 扩散炉自动恒温控制系统[D]. 太原: 太原理工大学, 2007.

    Du Jing. Diffusion furnace automatic temperature control system[D]. Taiyuan: Taiyuan University of Technol., 2007.

[6] Clarence W, De Silva. Modeling and Control of Engineering Systems[M]. Beijing: Higher Education Press, 2016: 342.

[7] 向 涛. 基于热平衡机理的多温区动态建模及控制研究[D]. 长沙: 中南大学, 2006.

    Xiang Tao. Multitemperature zone dynamic modeling and control based on thermal equilibrium mechanism[D]. Changsha: Central South University, 2006.

[8] 李友荣, 吴双应, 石万元, 等. 传热分析与计算[M]. 北京: 高等教育出版社, 1999: 6471.

    Li Yourong, Wu Shuangying, Shi Wanyuan, et al. Heat Transfer Analysis and Calculation[M]. Beijing: Higher Education Press, 1999: 6471.

[9] 刘彦丰, 高正阳, 梁秀俊. 传热学[M]. 北京: 中国电力出版社, 2015: 1878 .

    Liu Yanfeng, Gao Zhengyang, Liang Xiujun. Heat Transfer[M]. Beijing: China Electric Power Press, 2015: 1878.

[10] 胡寿松. 自动控制原理基础教程[M]. 北京: 科学出版社, 2017: 81411.

    Hu Shousong. Basic Principle of Automatic Control Principle[M]. Beijing: Science Press, 2017: 81411.

伏娜, 张晞. 基于热平衡机理的质子交换炉温控系统数学模型[J]. 半导体光电, 2018, 39(5): 643. FU Na, ZHANG Xi. Research on Mathematical Model of Temperature Control System in Proton Exchange Furnace Based on Heat Balance Mechanism[J]. Semiconductor Optoelectronics, 2018, 39(5): 643.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!