光学学报, 2019, 39 (8): 0806003, 网络出版: 2019-08-07   

光通信链路中集成芯片的收发一体工作 下载: 1203次

Integrated Chip for Simultaneous Transmission and Reception in Optical Communication Links
作者单位
北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
引用该论文

罗俊伟, 刘凯, 位祺, 黄永清, 段晓峰, 王琦, 任晓敏, 蔡世伟. 光通信链路中集成芯片的收发一体工作[J]. 光学学报, 2019, 39(8): 0806003.

Junwei Luo, Kai Liu, Qi Wei, Yongqing Huang, Xiaofeng Duan, Qi Wang, Xiaomin Ren, Shiwei Cai. Integrated Chip for Simultaneous Transmission and Reception in Optical Communication Links[J]. Acta Optica Sinica, 2019, 39(8): 0806003.

参考文献

[1] ElbyS. Evolution of networks to meet the explosion of cloud services[C]∥Optical Fiber Communication Conference 2015, March 22-26, 2015, Los Angeles, California. Washington, D.C.: OSA, 2015: Tu2H. 5.

[2] FayyazM, AzizK. Classification of optical interconnects in data center networks[C]∥2014 12th International Conference on Frontiers of Information Technology, December 17-19, 2014, Islamabad, Pakistan. New York: IEEE, 2014: 61- 66.

[3] 吕朝晨, 王青, 尧舜, 等. 4×15 Gbit/s 850 nm垂直腔面发射激光器列阵[J]. 光学学报, 2018, 38(5): 0514001.

    Lü Z C, Wang Q, Yao S, et al. 4×15 Gbit/s 850 nm vertical cavity surface emitting laser array[J]. Acta Optica Sinica, 2018, 38(5): 0514001.

[4] 冯源, 郝永芹, 王宪涛, 等. 850 nm垂直腔面发射激光器结构优化与制备[J]. 中国激光, 2017, 44(3): 0301005.

    Feng Y, Hao Y Q, Wang X T, et al. Structural optimization and fabrication of 850 nm vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 2017, 44(3): 0301005.

[5] Zhou Z P, Tu Z J, Li T T, et al. Silicon photonics for advanced optical interconnections[J]. Journal of Lightwave Technology, 2015, 33(4): 928-933.

[6] Michalzik R, Kern A, Wahl D. Bidirectional multimode fiber interconnection[J]. Proceedings of SPIE, 2012, 8176: 82760I.

[7] AzizK, FayyazM. Optical interconnects for data center networks[M] ∥Khan S, Zomaya A. Handbook on data centers. New York: Springer, 2015: 449- 483.

[8] AleksicS. The future of optical interconnects for data centers: a review of technology trends[C]∥2017 14th International Conference on Telecommunications (ConTEL), June 28-30, 2017, Zagreb, Croatia. New York: IEEE, 2017: 41- 46.

[9] Kern A, Paul S, Schwarz W, et al. Bidirectional multimode fiber interconnection at Gb/s data rates with monolithically integrated VCSEL-PIN transceiver chips[J]. IEEE Photonics Technology Letters, 2011, 23(15): 1058-1060.

[10] Song Y M, Choi H J, Lee Y T, et al. Reflective displacement sensors with monolithically integrated VCSELs and RCEPDs[J]. Electronics Letters, 2015, 51(10): 782-783.

[11] KachrisC, Tomkos I. A roadmap on optical interconnects in data centre networks[C]∥2015 17th International Conference on Transparent Optical Networks ( ICTON), July 5-9, 2015, Budapest. New York: IEEE, 2015:We.A3. 1.

[12] Tatum J A, Gazula D, Graham L A, et al. VCSEL-based interconnects for current and future data centers[J]. Journal of Lightwave Technology, 2015, 33(4): 727-732.

[13] Kern A, Al-Samaneh A, Wahl D, et al. Monolithic VCSEL-PIN photodiode integration for bidirectional optical data transmission[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 6100313.

[14] Shen PK, Chen CT, Li SL, et al. Three-dimensional integrated optical interconnect with laser and photodetector on SOI substrate[C]∥Technical Digest of the Eighteenth Microoptics Conference, October 27-30, 2014, Tokyo, Japan. New York: IEEE, 2014: 14034244.

[15] Liu K, Fan H Z, Huang Y Q, et al. A pair of integrated optoelectronic transceiving chips for optical interconnects[J]. Chinese Optics Letters, 2018, 16(9): 091301.

[16] 王俊, 马骁宇, 郑凯, 等. 高注入效率大功率808 nm量子阱半导体激光器结构: CN1901301A[P].2007-01-24.

    WangJ, Ma XY, ZhengK, et al. High injection efficiency high power 808 nm quantum well semiconductor laser structure: CN1901301A[P]. 2007-01-24.

[17] Zhang Y, Ning Y Q, Zhang L S, et al. Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs[J]. Optics Express, 2011, 19(13): 12569-12581.

[18] Wohlmuth W A, Seo J W, Fay P, et al. A high-speed ITO-InAlAs-InGaAs Schottky-barrier photodetector[J]. IEEE Photonics Technology Letters, 1997, 9(10): 1388-1390.

[19] Hurst JB. Molecular-beam epitaxial growth of low-dark-current avalanche photodiodes[D]. Austin: University of Texas at Austin, 2007.

[20] Zhang J, de Groote A, Abbasi A, et al. . Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors[J]. Optics Express, 2017, 25(13): 14290-14299.

[21] Wenzel H, Wunsche H J. The effective frequency method in the analysis of vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 1997, 33(7): 1156-1162.

[22] Li Z M, Dzurko K M, Delage A, et al. A self-consistent two-dimensional model of quantum-well semiconductor lasers: optimization of a GRIN-SCH SQW laser structure[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 792-803.

[23] Lear K L. Al-Omari A N. Progress and issues for high-speed vertical cavity surface emitting lasers[J]. Proceedings of SPIE, 2007, 6484: 64840J.

罗俊伟, 刘凯, 位祺, 黄永清, 段晓峰, 王琦, 任晓敏, 蔡世伟. 光通信链路中集成芯片的收发一体工作[J]. 光学学报, 2019, 39(8): 0806003. Junwei Luo, Kai Liu, Qi Wei, Yongqing Huang, Xiaofeng Duan, Qi Wang, Xiaomin Ren, Shiwei Cai. Integrated Chip for Simultaneous Transmission and Reception in Optical Communication Links[J]. Acta Optica Sinica, 2019, 39(8): 0806003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!